

CCCRDINATE GECRETRY

The diagram shows a rhombus *ABCD*. The points *B* and *D* have coordinates (2, 10) and (6, 2) respectively, and *A* lies on the *x*-axis. The mid-point of *BD* is *M*. Find, by calculation, the coordinates of each of *M*, *A* and *C*.

[6]

- **2.** Three points have coordinates A(2, 6), B(8, 10) and C(6, 0). The perpendicular bisector of AB meets the line BC at D. Find
 - (i) the equation of the perpendicular bisector of AB in the form ax + by = c,

(ii) the coordinates of *D*.

[4]

- 3. The equation of a curve is xy = 12 and the equation of a line *l* is 2x + y = k, where *k* is a constant.
 - (i) In the case where k = 11, find the coordinates of the points of intersection of l and the curve.
 - (ii) Find the set of values of k for which l does not intersect the curve.

[4]

[3]

(iii) In the case where k = 10, one of the points of intersection is P(2, 6). Find the angle, in degrees correct to 1 decimal place, between l and the tangent to the curve at P.

4. The curve $y^2 = 12x$ intersects the line 3y = 4x + 6 at two points. Find the distance between the two points.

[6]

- 5. A curve is such that $\frac{dy}{dx} = \frac{4}{\sqrt{6-2x}}$, and P (1, 8) is a point on the curve.
 - (i) The normal to the curve at the point P meets the coordinate axes at Q and at R. Find the coordinates of the mid-point of QR.

[5]

(ii) Find the equation of the curve.

The three points A(1, 3), B(13, 11) and C(6, 15) are shown in the diagram. The perpendicular from C to AB meets AB at the point D. Find

(i)	the equation of <i>CD</i> ,	
		[3]

(ii) the coordinates of *D*.

The diagram shows a rectangle *ABCD*. The point *A* is (2, 14), *B* is (-2, 8) and *C* lies on the *x*-axis. Find

(i) the equation of BC,

[4]

(ii) the coordinates of C and D.

[3]

The three points A(3, 8), B(6, 2) and C(10, 2) are shown in the diagram. The point D is such that the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D.

[7]

In the diagram, the points A and C lie on the x- and y-axes respectively and the equation of AC is 2y + x = 16. The point B has coordinates (2, 2). The perpendicular from B to AC meets AC at the point X.

(i) Find the coordinates of *X*.

[4]

- (ii) Find the coordinates of *D*.
- (iii) Find, correct to 1 decimal place, the perimeter of *ABCD*.

[3]

[2]

10. The equation of a curve is y = 5 - ⁸/_x.
(i) Show that the equation of the normal to the curve at the point P(2, 1) is 2y + x = 4. This normal meets the curve again at the point Q.
(ii) Find the coordinates of Q.
(iii) Find the length of PQ.

[4]

[3]

[2]

The diagram shows points *A*, *B* and *C* lying on the line 2y = x + 4. The point *A* lies on the *y*-axis and AB = BC. The line from *D* (10, -3) to *B* is perpendicular to *AC*. Calculate the coordinates of *B* and *C*.

[7]

The diagram shows the curve $y = x^3 - 6x^2 + 9x$ for $x \ge 0$. The curve has a maximum point at *A* and a minimum point on the *x*-axis at *B*. The normal to the curve at *C* (2, 2) meets the normal to the curve at *B* at the point *D*.

- [3]
- (iii) Find the area of the shaded region.

[5]

SCLUTIONS

B (2, 10)

B1

7C

M of $AC = \frac{1}{2}$ M1 Use of $m_1m_2 = -1$

Eqn of
$$AC y - 6 = \frac{1}{2}(x - 4)$$
 M1

Correct method leading to A – the equation may not be seen -y = 0 may be used with gradient.

 $\rightarrow x = -8$ when y = 0 A(-8, 0) A1

 \rightarrow *C* = (16, 12) by vector move etc. M1 A1 Any valid method - vectors, midpoint backwards, or solution of 2 sim eqns.

[6]

M1

DM1A1

4

2. (i)
$$M(5,8)$$
 B1 Co.

gradient of $AB = \frac{2}{3}$, Perp = $-\frac{3}{2}$ Use of y step/x-step + $m_1m_2 = -1$ for AB

Equation
$$y - 8 = -\frac{3}{2} (x - 5)$$
 M1
Use of $y - k = m(x - h)$ not $(y + k)$ etc

 $\rightarrow 2y + 3x = 31$ (or locus method M1A1M1A1) A1 4

(ii)
$$BC. y = 5(x-6) y = 5x - 30$$
 M1A1
Use of $y - k = m(x - h)$ not $(y + k)$ etc. co

Sim Eqns \rightarrow (7,5) Correct attempt at soln of BC with his answer to (i).

3.	(i)	$2x^{2} + 12 = 11x$ or $y^{2} - 11y + 24 = 0$ Elimination of one variable completely	M1	
		Solution $\rightarrow (1\frac{1}{2}, 8)$ and (4, 3) Correct method for soln of quadratic = 0	DM1	
		Confect method for som of quadrane – o	A1	3
		со		C
		Guesswork B1 for one, B3 for both.		
	(ii)	$2x^2 - kx + 12 = 0$ Used on quadratic=0. Allow = 0, >0 etc	M1	
		Use of $b^2 - 4ac$ For $k^2 - 96$	A1	
		$k^2 < 96$ Definite use of $b^2 - 4ac < 0$	DM1	
		$-\sqrt{96} < k < \sqrt{96}$ or $ k < \sqrt{96}$ Co. (condone inclusion of \leq)	A1	4
	(iii)	gradient of $2x + y = k = -2$ Anywhere	B1	
		$dy/dx = -12/x^2$ (= -3) For differentiation only – unsimplified	B1	
		Use of tangent for an angle Used with either line or tangent	M1	
		Difference = 8.1° or 8.2°	A1	4
			[11]	
4.	$y^2 =$ Com x or	12x and $3y = 4x + 6$ plete elimination of 1 variable. y must be removed completely.	M1	
	$\rightarrow y^2$ Must	$x^{2}-9y+18 = 0 \text{ or } 4x^{2}-15x+9 = 0$ t be a 3 term quad – not nec = 0.	A1	
	Solu Corr	tion $\rightarrow (\frac{3}{4}, 3)$ and (3,6) ect method of solution. co.	DM1 A1	
	Dista	ance = $\sqrt{(3^2 + 2.25^2)} = 3.75$	M1 A1	
	Corr	ect method including $$. co.	[6]	

5. (i)
$$\frac{dy}{dx} = \frac{4}{\sqrt{6-2x}}$$
.
if $x = 1, m = 2$ and perp $m = -\frac{1/2}{2}$ M1 A1
Use of $m_1m_2 = -1$. A1 co for $-\frac{1/2}{2}$
 $\rightarrow y - 8 = -\frac{1}{2}(x-1)(2y+x=17)$ DM1
Any correct form of perpendicular.
 $\rightarrow (0, 8\frac{1}{2})$ and (17,0) A1
co.
 $\rightarrow M(8\frac{1}{2}, 4\frac{1}{4})$ B1 $\sqrt{5}$
For his answers.
(ii) $y = \frac{4(6-2x)^{\frac{1}{2}}}{\frac{1}{2}\times -2} + c$ B1
For 4, $(6-2x)^{\frac{1}{2}}$ and $+\frac{1}{2}$ and no other f(x)

For 4,
$$(6-2x)^{\frac{1}{2}}$$
 and $+\frac{1}{2}$ and no other f(x)

M1 For $\div -2$ (only if no other f(*x*))

 \rightarrow subs (1, 8) \rightarrow c = 16 Substituting into any integrated expression to find c. M1A1 4 [9]

6. (i) m of AB = 8/12
m of perpendicular = -12/8 M1
Use of
$$m_1m_2 = -1$$
 and y-step/x-step
eqn of $CD \ y - 15 = -\frac{3}{2}(x-6)$ M1 A1 3
Correct form of eqn of line. co.
(ii) eqn of $AB \ y - 3 = \frac{2}{3}(x-1)$ M1 A1 $\sqrt{}$
Could be given in (i)
Sim eqns $2y + 3x = 48$ and $3y = 2x + 7$ DM1
Needs both M marks from (i)
 $\rightarrow D(10, 9)$ A1 4

$$\rightarrow D(10, 9)$$
 A1 co.

[7]

7.	(i)	m of $AB = 1.5$ (or $1\frac{1}{2}$) co anywhere	B1		
		m of $BC = -1 \div (\text{m of } AB) = -\frac{2}{3}$ Use of $m_1m_2 = -1$		M1	
		$\rightarrow \text{Eqn } y - 8 = -\frac{2}{3} (x + 2) \text{ or } 3y + 2x = 20$ Correct form used - or $y = mx + c$. co ($\sqrt{\text{ needs both M marks}}$)		M1 A1√	4
	(ii)	Put $y = 0 \rightarrow C$ (10, 0) in his linear equation.		B1 $$	
		Vector move $\rightarrow D$ (14, 6) completely correct method. Co		M1A1	3

(or sim eqns
$$3y + 2x = 46$$
 and $2y = 3x - 30$) [7]

8.

Gradient of $AB = -2$	
co	

M1 A1 $\sqrt{}$

Eqn of CD y - 2 = -2(x - 10)(y + 2x = 22) correct form of eqn (inc y = mx + c) awarded for either *CD* or *AD*. accept any form for A mark.

Uses $m_1m_2 = -1$ M1 Use of $m_1m_2 = -1$

Eqn of DA
$$y - 8 = \frac{1}{2}(x - 3)$$

(2y = x + 13)
Any correct form.

Sim eqns \rightarrow (6.2, 9.6) M1A1 Reasonable algebra. co. [7]

9.	(i)	Gradient of $AC = -\frac{1}{2}$	B1		
		Correct gradient.			
		Perpendicular gradient = 2 Use of $m_1m_2 = -1$		M1	
		Eqn of <i>BX</i> is $y - 2 = 2(x - 2)$ Correct form of equation		M1	
		Sim Eqns $2y + x = 16$ with $y = 2x - 2$ $\rightarrow (4, 6)$ co		A1	4
	(ii)	X is mid-point of <i>BD</i> , <i>D</i> is (6, 10) Any valid method. ft on (i).]	M1 A1√	2
	(iii)	$AB = \sqrt{\left(14^2 + 2^2\right)} = \sqrt{200}$ BC = $\sqrt{\left(2^2 + 6^2\right)} = \sqrt{40}$ Use of Pythagoras once.		M1	
		\rightarrow Perimeter = $2\sqrt{200} + 2\sqrt{40}$ 4 lengths added.		DM1	
		\rightarrow Perimeter = 40.9		A1	3
		со		[9]	

10. $y = 5 - \frac{8}{x}, P(2, 1)$

(i) $\frac{dy}{dx} = \frac{8}{x^2}$ **B**1 Correct differentiation

m of tan = 2*m* of normal =
$$-\frac{1}{2}$$
 M1
Use of $m_1m_2 = -1$

Eqn of normal $y - 1 = -\frac{1}{2} (x - 2)$ M1

Correct method for line

$$\rightarrow 2y + x = 4$$
 A1 4
Answer given

(ii) Sim eqns $2y + x = 4$, $y = 5 - \frac{8}{-100}$		
$\rightarrow x^{2} + 6x - 16 = 0 \text{ or } y^{2} - 7y + 6 = 0$ Complete elimination of x or y	M1	
\rightarrow (-8, 6) Soln of quadratic. Co	DM1 A1	3
(iii) Length = $\sqrt{10^2 + 5^2} = \sqrt{125}$ Correct use of Pythagoras	M1	
\rightarrow 11.2 (accept $\sqrt{125}$ or $5\sqrt{5}$ etc)	A1	2
For his points.	[9]	
$m \text{ of } AC = \frac{1}{2}$		
Perpendicular gradient = -2 Use of $m_1m_2 = -1$	M1	
Eqn <i>BD</i> $y + 3 = -2(x - 10)$ Correct method for eqn of line	M1	
(or $y + 2x = 17$) In any form.	A1	

in any rorm.

11.

Sim. eqns *BD* with given eqn. Correct method of solution.

M1

Vector move (step) $\rightarrow C$ (12, 8) Any valid method. \sqrt{for} his B. [7]

12.	(i)	$\frac{dy}{dx} = 3x^2 - 12x + 9$ co (can be given in part (ii))	B1	
		Solves $\frac{dy}{dx} = 0$ Attempt to solve $dy/dx = 0$.		M1

$$\rightarrow A (1, 4), B (3, 0).$$
A1 3
Both needed.

(ii)	If $x = 2, m = -3$ 1	
	Normal has $m = \overline{3}$	M1
	Use of $m_1 m_2 = -1$. needs calculus.	

Eqn
$$y - 2 = {}^{3}(x - 2)$$
 or $3y = x + 4$. M1 A1 3

Correct form of equation – needs calculus. A1 any form.

(iii) area under curve – integrate y. $\rightarrow \frac{1}{4}x^4 - 2x^3 + \frac{9}{2}x^2$ B2,1 For the 3 terms. -1 for each error.

Limits 2 to "his 3" $\rightarrow \frac{3}{4}$ (0.75) Using 2 to "his 3" with integration.

Area of trapezium =
$$\frac{1}{2} \times 1 \times (2 + 2\frac{1}{3})$$

= $2\frac{1}{6}$ M1

Any correct method for trapezium.

Subtract
$$\rightarrow$$
 shaded area of $1 \frac{5}{12}$ A1 5
co

M1