
cooromate
CEOMETRI

The diagram shows a rhombus $A B C D$. The points B and D have coordinates $(2,10)$ and $(6,2)$ respectively, and A lies on the x-axis. The mid-point of $B D$ is M. Find, by calculation, the coordinates of each of M, A and C.
2. Three points have coordinates $A(2,6), B(8,10)$ and $C(6,0)$. The perpendicular bisector of $A B$ meets the line $B C$ at D. Find
(i) the equation of the perpendicular bisector of $A B$ in the form $a x+b y=c$,
(ii) the coordinates of D.
3. The equation of a curve is $x y=12$ and the equation of a line l is $2 x+y=k$, where k is a constant.
(i) In the case where $k=11$, find the coordinates of the points of intersection of l and the curve.
(ii) Find the set of values of k for which l does not intersect the curve.
(iii) In the case where $k=10$, one of the points of intersection is $P(2,6)$. Find the angle, in degrees correct to 1 decimal place, between l and the tangent to the curve at P.
4. The curve $y^{2}=12 x$ intersects the line $3 y=4 x+6$ at two points. Find the distance between the two points.
5. A curve is such that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{\sqrt{(6-2 x)}}$, and $P(1,8)$ is a point on the curve.
(i) The normal to the curve at the point P meets the coordinate axes at Q and at R. Find the coordinates of the mid-point of $Q R$.
(ii) Find the equation of the curve.
6.

The three points $A(1,3), B(13,11)$ and $C(6,15)$ are shown in the diagram. The perpendicular from C to $A B$ meets $A B$ at the point D. Find
(i) the equation of $C D$,
(ii) the coordinates of D.
7.

The diagram shows a rectangle $A B C D$. The point A is $(2,14), B$ is $(-2,8)$ and C lies on the x-axis. Find
(i) the equation of $B C$,
(ii) the coordinates of C and D.
8.

The three points $A(3,8), B(6,2)$ and $C(10,2)$ are shown in the diagram. The point D is such that the line $D A$ is perpendicular to $A B$ and $D C$ is parallel to $A B$. Calculate the coordinates of D.
9.

In the diagram, the points A and C lie on the x - and y-axes respectively and the equation of $A C$ is $2 y+x=16$. The point B has coordinates $(2,2)$. The perpendicular from B to $A C$ meets $A C$ at the point X.
(i) Find the coordinates of X.

The point D is such that the quadrilateral $A B C D$ has $A C$ as a line of symmetry.
(ii) Find the coordinates of D.
(iii) Find, correct to 1 decimal place, the perimeter of $A B C D$.
10. The equation of a curve is $y=5-\frac{8}{x}$.
(i) Show that the equation of the normal to the curve at the point $P(2,1)$ is $2 y+x=4$.

This normal meets the curve again at the point Q.
(ii) Find the coordinates of Q.
(iii) Find the length of $P Q$.
11.

The diagram shows points A, B and C lying on the line $2 y=x+4$. The point A lies on the y-axis and $A B=B C$. The line from $D(10,-3)$ to B is perpendicular to $A C$. Calculate the coordinates of B and C.
12.

The diagram shows the curve $y=x^{3}-6 x^{2}+9 x$ for $x \geq 0$. The curve has a maximum point at A and a minimum point on the x-axis at B. The normal to the curve at $C(2,2)$ meets the normal to the curve at B at the point D.
(i) Find the coordinates of A and B.
(ii) Find the equation of the normal to the curve at C.
(iii) Find the area of the shaded region.

$$
\sum_{2}
$$

1.

M (4, 6)
m of $B D=-2$
CAO
M of $A C=1 / 2$
Use of $m_{1} m_{2}=-1$
Eqn of $A C y-6=\frac{1}{2}(x-4)$
Correct method leading to A - the
equation may not be seen $-y=0$ may be used with gradient.
$\rightarrow x=-8$ when $y=0 \mathrm{~A}(-8,0)$
$\rightarrow C=(16,12)$ by vector move etc.
Any valid method - vectors, midpoint backwards, or solution of 2 sim eqns.
2. (i) $M(5,8)$

Co.
gradient of $A B=\frac{2}{3}, \operatorname{Perp}=-\frac{3}{2}$
Use of y step $/ \mathrm{x}$-step $+\mathrm{m}_{1} \mathrm{~m}_{2}=-1$ for $A B$
Equation $y-8=-\frac{3}{2}(x-5)$
M1
Use of $y-k=m(x-h)$ not $(y+k)$ etc
$\rightarrow 2 y+3 x=31$
(or locus method M1A1M1A1)
(ii) BC. $y=5(x-6) y=5 x-30$

Use of $y-k=m(x-h) \operatorname{not}(y+k)$ etc. co
Sim Eqns $\rightarrow(7,5)$
Correct attempt at soln of $B C$ with his answer to (i).
3. (i) $2 x^{2}+12=11 x$ or $y^{2}-11 y+24=0$

Elimination of one variable completely
Solution $\rightarrow(11 / 2,8)$ and $(4,3)$
Correct method for soln of quadratic $=0$
co
Guesswork B1 for one, B3 for both.
(ii) $2 x^{2}-k x+12=0$

Used on quadratic $=0$. Allow $=0,>0$ etc
Use of $b^{2}-4$ ac
For $k^{2}-96$
$k^{2}<96$
Definite use of $b^{2}-4 \mathrm{ac}<0$
$-\sqrt{ } 96<k<\sqrt{ } 96$ or $|k|<\sqrt{ } 96$
A1 4
Co. (condone inclusion of \leq)
(iii) gradient of $2 x+y=k=-2$

Anywhere
$\mathrm{d} y / \mathrm{d} x=-12 / x^{2}(=-3)$
For differentiation only - unsimplified
Use of tangent for an angle
Used with either line or tangent
Difference $=8.1^{\circ}$ or 8.2°
Co
4. $y^{2}=12 x$ and $3 y=4 x+6$

Complete elimination of 1 variable.
x or y must be removed completely.
$\rightarrow y^{2}-9 y+18=0$ or $4 x^{2}-15 x+9=0$
Must be a 3 term quad - not nec $=0$.
Solution $\rightarrow(3 / 4,3)$ and $(3,6)$
Correct method of solution. co.
Distance $=\sqrt{\left(3^{2}+2.25^{2}\right)}=3.75$
Correct method including $\sqrt{ }$. co.
5. (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{\sqrt{6-2 x}}$.
if $x=1, m=2$ and perp $m=-1 / 2$
Use of $m_{1} m_{2}=-1$. A1 co for $-1 / 2$
$\rightarrow y-8=-\frac{1}{2}(x-1)(2 y+x=17)$
Any correct form of perpendicular.
$\rightarrow(0,81 / 2)$ and $(17,0)$
co.
$\rightarrow \mathrm{M}(81 / 2,41 / 4)$
B1 $\sqrt{ } 5$
For his answers.
(ii) $y=\frac{4(6-2 x)^{\frac{1}{2}}}{\frac{1}{2} \times-2}+\mathrm{c}$

B1

For $4,(6-2 x)^{1 / 2}$ and $+1 / 2$ and no other $\mathrm{f}(x)$

M1
For $\div-2$ (only if no other $\mathrm{f}(x)$)
$\rightarrow \operatorname{subs}(1,8) \rightarrow c=16$
Substituting into any integrated expression to find c .
6. (i) m of $\mathrm{AB}=8 / 12$
m of perpendicular $=-12 / 8$
Use of $m_{1} m_{2}=-1$ and y-step $/ x$-step
eqn of $C D y-15=-\frac{3}{2}(x-6)$
M1 A1 3
Correct form of eqn of line. co.
(ii) eqn of $A B y-3=\frac{2}{3}(x-1)$

M1 A1 $\sqrt{ }$
Could be given in (i)
Sim eqns $2 y+3 x=48$ and $3 y=2 x+7$ DM1
Needs both M marks from (i)
$\rightarrow D(10,9)$
A1 4
co.
7. (i) m of $A B=1.5$ (or $11 / 2$)
co anywhere
m of $B C=-1 \div(\mathrm{m}$ of $A B)=-2 / 3$
Use of $m_{1} m_{2}=-1$
\rightarrow Eqn $y-8=-\frac{2}{3}(x+2)$ or $3 y+2 x=20$
Correct form used - or $y=m x+c$. co ($\sqrt{ }$ needs both M marks)
$\begin{array}{ll}\text { (ii) } \quad \text { Put } y=0 \rightarrow C(10,0) & \text { B } 1 \sqrt{ } \\ \sqrt{ } \text { in his linear equation. } & \end{array}$
Vector move $\rightarrow D(14,6)$
completely correct method. Co
(or sim eqns $3 y+2 x=46$ and $2 y=3 x-30$)
8.

Gradient of $A B=-2$
co

Eqn of $C D y-2=-2(x-10)$
$(y+2 x=22)$
correct form of eqn (inc $y=m x+c$)
awarded for either $C D$ or $A D$.
accept any form for A mark.
Uses $m_{1} m_{2}=-1$
Use of $m_{1} m_{2}=-1$
Eqn of DA $y-8=\frac{1}{2}(x-3)$
$(2 y=x+13)$
A1 $\sqrt{ }$
Any correct form.
Sim eqns $\rightarrow(6.2,9.6)$
Reasonable algebra. co.
9. (i) Gradient of $A C=-1 / 2$

Correct gradient.
Perpendicular gradient $=2$
Use of $m_{1} m_{2}=-1$
Eqn of $B X$ is $y-2=2(x-2)$
Correct form of equation
Sim Eqns $2 y+x=16$ with $y=2 x-2$
$\rightarrow(4,6)$
co
(ii) $\quad X$ is mid-point of $B D, D$ is $(6,10)$

Any valid method. ft on (i).
(iii) $A B=\sqrt{\left(14^{2}+2^{2}\right)}=\sqrt{200}$
$B C=\sqrt{\left(2^{2}+6^{2}\right)}=\sqrt{40}$
Use of Pythagoras once.
\rightarrow Perimeter $=2 \sqrt{200}+2 \sqrt{40}$
4 lengths added.
\rightarrow Perimeter $=40.9$
A1 3
co
10. $y=5-\frac{8}{x}, P(2,1)$
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{x^{2}}$

B1
Correct differentiation
m of $\tan =2 m$ of normal $=-1 / 2$
Use of $m_{1} m_{2}=-1$
Eqn of normal $y-1=-\frac{1}{2}(x-2)$
Correct method for line
$\rightarrow 2 y+x=4$
Answer given
(ii) Sim eqns $2 y+x=4, y=5-\frac{8}{x}$
$\rightarrow x^{2}+6 x-16=0$ or $y^{2}-7 y+6=0$
Complete elimination of x or y

$$
\rightarrow(-8,6)
$$

Soln of quadratic. Co
(iii) Length $=\sqrt{10^{2}+5^{2}}=\sqrt{125}$

Correct use of Pythagoras
$\rightarrow 11.2$ (accept $\sqrt{125}$ or $5 \sqrt{5}$ etc)
A1 2
For his points.
11. m of $A C=1 / 2$

Perpendicular gradient $=-2$
Use of $m_{1} m_{2}=-1$
Eqn $B D y+3=-2(x-10)$
Correct method for eqn of line

$$
(\text { or } y+2 x=17)
$$

In any form.
Sim. eqns $B D$ with given eqn.
Correct method of solution.
$\rightarrow B(6,5)$
co.
Vector move (step) $\rightarrow C(12,8)$
Any valid method. $\sqrt{ }$ for his B.
12. (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-12 x+9$
co (can be given in part (ii))
Solves $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
Attempt to solve $\mathrm{d} y / \mathrm{d} x=0$.
$\rightarrow \mathrm{A}(1,4), B(3,0)$.
Both needed.
(ii) If $x=2, m=-3 \quad 1$

Normal has $m=\overline{3}$
Use of $m_{1} m_{21}=-1$. needs calculus.
Eqn $y-2=\overline{3}(x-2)$ or $3 y=x+4$.
Correct form of equation - needs calculus.
A1 any form.
(iii) area under curve - integrate y.
$\rightarrow \frac{1}{4} x^{4}-2 x^{3}+\frac{9}{2} x^{2}$
For the 3 terms. -1 for each error.
Limits 2 to "his 3 " $\rightarrow 3 / 4$ (0.75)
Using 2 to "his 3 " with integration.
Area of trapezium $=1 / 2 \times 1 \times(2+21 / 3)$
$=2 \frac{1}{6}$
Any correct method for trapezium.
Subtract \rightarrow shaded area of $1 \frac{5}{12}$
co

