

DIFFERENTIATION

Formulae to Learn

The Rules for Differentiation are

y = f(x)	$\frac{dy}{dx} = f'(x)$
ax ⁿ	nax^{n-1}
ax	a
a	0

The instructions are to either:

Find
$$\frac{dy}{dx}$$
 (or $f'(x)$), or

Differentiate, or

Find the derived function, or

Find the derivative.

 $\frac{dy}{dx} = f'(x)$ finds the gradients of the **tangent**s on the curve y = f(x).

Gradients of tangents and normals are related by

$$m_{\rm normal} = -\frac{1}{m_{\rm tangent}}$$

The second derivative is
$$\frac{d^2y}{dx^2} = f''(x)$$
.

Which means differentiate $\frac{dy}{dx}$

STARTER QUESTIONS 1

1) Find the derived function of the following

a) x ⁴	b) 3x ⁴	c) 2x ⁶	d) 7x ⁵	e) 12x ⁸			
f) 6x ⁸	g) $\frac{1}{3}x^{3}$	h) $\frac{2}{3}x^3$	i) $\frac{5}{7} x^2$	j) -5x ⁴			
2) Differentiate							
a) x ⁻³	b) x ⁻⁷	c) 3x ⁻²	d) 5x ⁻¹	e)-3x ⁻²			
f) 8x ⁻³	g) 3x ⁻²	h) $-\frac{2}{3}x^{-3}$	i) $\frac{5}{7} x^{-7}$				
3) Differentiate with respect to x							

- a) $x^{\frac{3}{2}}$ b) $x^{\frac{7}{4}}$ c) $4x^{\frac{7}{4}}$ d) $5x^{\frac{3}{5}}$ e) $-7x^{\frac{1}{2}}$
- f) $-2x^{\frac{2}{3}}$ g) $\frac{3}{5}x^{\frac{1}{3}}$ h) $\frac{5}{7}x^{\frac{7}{8}}$ i) $-\frac{5}{12}x^{\frac{3}{5}}$

4) Differentiate with respect to x

a) $x^{-\frac{1}{2}}$ b) $x^{-\frac{3}{4}}$ c) $-4x^{-\frac{1}{2}}$ d) $12x^{-\frac{1}{3}}$ e) $-\frac{5}{2}x^{-\frac{2}{5}}$

5) Differentiate the following expressions with respect to x

a)
$$x^{2}$$
 +5x +7
+3x
b) x^{2} -5x +3
c) x^{3} + 5 x^{2} -7x+1
d) -4 x^{5}

e)
$$3x^4 + 2x^3 - 4x^2$$
 f) $\frac{2}{3}x^5 + \frac{1}{2}x^3 - 6$

6) Find the gradient of the curve whose equation is

a)
$$y = x^2$$
 at the point (2, 4) b) $y = 3x^2 - x + 1$ at the point (2, 11)

c) $y = x^3 + 2x - 3$ when x = -1 d) $y = 7 - 2x - x^2$ when x = 2

STARTER QUESTIONS 2

1) Simplify and differentiate the following with respect to x

a) y=x(5x+8) b) $y=x^{3}(3x^{2}+1)$

c) y= 3x² (x³-5x+4) d) y=
$$\frac{x^2+2x}{x}$$

e) y=(x+3)(x-1) f) y=(x-3)(x-4)

g)
$$y = \frac{x^2 + 3x + 2}{x + 2}$$
 h) $y = \frac{1}{x}$

i)
$$y = \frac{1}{x^2}$$
 j) $y = \sqrt{x}$

k) y=
$$\sqrt[3]{x}$$
 I) y= $\frac{3}{4}\sqrt[5]{x}$

m)
$$y = \frac{1}{\sqrt{x}}$$
 n) $y = -\frac{1}{\sqrt[3]{x}}$

2) For each of the following expressions find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$

a)
$$y=3x^4+\frac{4}{x^2}$$
 b) $y=3x^2+2x-4$

c) y=
$$3\sqrt{x}$$
 d) y= $\frac{5}{\sqrt{x}}$

Past Paper Questions

2.

(some of the following questions are part of longer questions)

1. (i) Given that
$$y = 5x^3 + 7x + 3$$
, find
(a) $\frac{dy}{dx}$,
(b) $\frac{d^2y}{dx^2}$.
(1)
(Total 4 marks)

Given that
$$y = 6x - \frac{4}{x^2}$$
, $x \neq 0$,
(a) find $\frac{dy}{dx}$, (2)

(Total 2 marks)

(2)

(1)

(5)

3. For the curve *C* with equation y = f(x),

(a) Find

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 + 2x - 7.$$
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.$$

(b) Show that
$$\frac{d^2 y}{dx^2} \ge 2$$
 for all values of x.

Given that the point P(2, 4) lies on C,

(d) find an equation for the normal to C at P in the form ax + by + c = 0, where a, b and c are integers.
 (5) (Total 13 marks)

4.

$$y = 7 + 10x^{\frac{3}{2}}$$

(a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

(2)

(5)

(5)

(4)

(5)

(Total 11 marks)

(Total 2 marks)

5. The curve *C* has equation $y = \frac{1}{3}x^3 - 4x^2 + 8x + 3$.

The point *P* has coordinates (3, 0).

- (a) Show that P lies on C. (1)
- (b) Find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

Another point *Q* also lies on *C*. The tangent to *C* at *Q* is parallel to the tangent to *C* at *P*.

- (c) Find the coordinates of *Q*.
- 6. The gradient of the curve *C* is given by

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (3x-1)^2.$$

The point P(1, 4) lies on C.

- (a) Find an equation of the normal to C at P.
- (b) Find an equation for the curve C in the form y = f(x).
- (c) Using $\frac{dy}{dx} = (3x 1)^2$, show that there is no point on C at which the tangent is parallel to the line y = 1 2x.

(2) (Total 11 marks) 7. The curve C with equation y = f(x) is such that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sqrt{x} + \frac{12}{\sqrt{x}}, \quad x > 0.$$

(a) Show that, when x = 8, the exact value of $\frac{dy}{dx}$ is $9\sqrt{2}$.

The curve *C* passes through the point (4, 30).

(b) Using integration, find f(x).

(6) (Total 9 marks)

8. The curve C has equation $y = 4x^2 + \frac{5-x}{x}$, $x \supseteq 0$. The point P on C has x-coordinate 1.

- (a) Show that the value of $\frac{dy}{dx}$ at *P* is 3. (5)
- (b) Find an equation of the tangent to C at P.

This tangent meets the x-axis at the point (k, 0).

(2) (Total 10 marks)

9.

The curve C, with equation y = x(4 - x), intersects the x-axis at the origin O and at the point A, as shown in the diagram above. At the point P on C the gradient of the tangent is -2.

(a) Find the coordinates of *P*.

(4)

(Total 4 marks)

The diagram above shows part of the curve C with equation $y = x^2 - 6x + 18$. The curve meets the y-axis at the point A and has a minimum at the point P.

(a) Express $x^2 - 6x + 18$ in the form $(x - a)^2 + b$, where *a* and *b* are integers. (3)

- (b) Find the coordinates of *P*. (2)
- (c) Find an equation of the tangent to C at A.

The tangent to C at A meets the x-axis at the point Q.

(d) Verify that *PQ* is parallel to the *y*-axis.

(1) (Total 10 marks)

(4)

Past Paper Solutions

- $15x^2 + 7$ (a) 1. (i) M1 A1 A1 3
 - (i) (b) 30*x* B1ft 1

(ii)
$$x + 2x^{\frac{3}{2}} + x^{-1} + C$$
 A1: $x + C$, A1: $+ 2x^{\frac{3}{2}}$, A1: $+x^{-1}$ M1 A1 A1 A1
[8]

[8]

2. (a)
$$\frac{dy}{dx} = 6 + 8x^{-3}$$
 M1 A1 2

M1 is for $x^n \rightarrow x^{n-1}$ in at least one term, 6 or x^{-3} is sufficient. A1 is fully correct answer. Ignore subsequent working.

[2]

3. (a)
$$\frac{d^2 y}{dx^2} = 3x^2 + 2$$
 M1 A1 2

(b) Since
$$x^2$$
 is always positive, $\frac{d^2 y}{dx^2} \ge 2$ for all x . B1 1

(c)
$$y = \frac{x^4}{4} + x^2 - 7x + (k)$$
 [k not required here] M1 A2 (1, 0)

$$4 = \frac{2^4}{4} + 2^2 - 14 + k \qquad k = 10 \qquad y = \frac{x^4}{4} + x^2 - 7x + 10 \qquad \text{M1 A1} \qquad 5$$

(d)
$$x = 2: \frac{dy}{dx} = 8 + 4 - 7 = 5$$
 M1 A1

Gradient of normal =
$$-\frac{1}{5}$$
 M1

$$y-4 = -\frac{1}{5}(x-2)$$
 $x+5y-22 = 0$ M1 A1 5
[13]

4. (a)
$$\frac{d y}{d x} = 10 \times \frac{3}{2} x^{\frac{1}{2}} \left(= 15 x^{\frac{1}{2}} \right)$$
 M1 A1

(b)
$$7x + 4x^{\frac{5}{2}} + C$$
 M1 A2 (1, 0) [5]

11

5. (a)
$$x = 3, y = 9 - 36 + 24 + 3 (9 - 36 + 27 = 0 \text{ is OK})$$
 B1 1

(b)
$$\frac{dy}{dx} = \frac{3}{3}x^2 - 2 \times 4 \times x + 8 (= x^2 - 8x + 8)$$
 M1 A1

When
$$x = 3$$
, $\frac{dy}{dx} = 9 - 24 + 8 \Rightarrow m = -7$ M1

Equation of tangent:
$$y - 0 = -7(x - 3)$$
 M1
 $y = -7x + 21$ A1 c.a.o.

1st M1 some correct differentiation (
$$x^n \rightarrow x^{n-1}$$
 for one term)

1st A1 correct unsimplified (all 3 terms)

$$2^{nd}$$
 M1 substituting x_p (= 3) in their $\frac{dy}{dx}$ clear evidence

 3^{rd} M1 using their m to find tangent at p.

(c)
$$\frac{dy}{dx} = m \text{ gives } x^2 - 8x + 8 = -7$$
 M1

$$(x^2 - 8x + 15 = 0)$$

 $(x - 5)(x - 3) = 0$ M1
 $x = (3) \text{ or } 5$ A1

x = 5

$$\therefore y = \frac{1}{3}5^5 - 4 \times 5^2 + 8 \times 5 + 3$$
 M1

$$y = -15\frac{1}{3}$$
 or $-\frac{46}{3}$ [11]

 1^{st} M1 forming a correct equation "their $\frac{dy}{dx}$ = gradient of

their tangent"

 2^{nd} M1 for solving a quadratic based on their $\frac{dy}{dx}$ leading to x

= ... The quadratic could be simply $\frac{dy}{dx} = 0$.

3rd M1 for using their x value (obtained from their quadratic) in y to obtain y coordinate. Must have one of the other two M marks to score this.

MR

For misreading (0, 3) for (3, 0) award B0 and then M1A1 as in scheme. Then allow all M marks but no A ft. (Max 7)

5

6. (a) Evaluate gradient at x = 1 to get 4, Grad. of normal $= -\frac{1}{m} \left(=-\frac{1}{4}\right)$ B1, M1 Equation of normal: $y-4 = -\frac{1}{4}(x-1)$ (4y = -x + 17) M1 A1 4

(b)
$$(3x-1)^2 = 9x^2 - 6x + 1$$
 (May be seen elsewhere) B1
Integrate: $\frac{9x^3}{3} - \frac{6x^2}{2} + x$ (+C) M1 A1ft

Substitute (1, 4) to find
$$c = ..., c = 3$$
 ($y = 3x^3 - 3x^2 + x + 3$) M1, A1cso

(c)Gradient of given line is
$$-2$$
B1Gradient of (tangent to) C is ≥ 0 (allow >0), so can never equal -2 .B12[11]

7. (a)
$$\sqrt{8} = 2\sqrt{2}$$
 seen or used somewhere (possibly implied).
 $12 \quad 12\sqrt{8} \quad 12 \quad 12\sqrt{2}$

$$\frac{12}{\sqrt{8}} = \frac{12\sqrt{6}}{8} \text{ or } \frac{12}{2\sqrt{2}} = \frac{12\sqrt{2}}{4}$$

Direct statement, e.g.
$$\frac{dy}{\sqrt{2}} = 3\sqrt{2}$$
 (no indication of method) is NiO. (1)
At $x = 8$, $\frac{dy}{\sqrt{2}} = 3\sqrt{8} + \frac{12}{\sqrt{2}} = 6\sqrt{2} + 3\sqrt{2} = 9\sqrt{2}$ (*) (*)

$$dx = 0, \frac{1}{\sqrt{8}} = 0.02 +$$

(b) Integrating:
$$\frac{3x^{\frac{3}{2}}}{\binom{3}{2}} + \frac{12x^{\frac{1}{2}}}{\binom{1}{2}} (+C)$$
 (*C* not required) M1 A1 A1

At (4, 30),
$$\frac{3 \times 4^{\frac{3}{2}}}{\binom{3}{2}} + \frac{12 \times 4^{\frac{1}{2}}}{\binom{1}{2}} + C = 30$$
 (*C* required) M1

(f(x) =)
$$2x^{\frac{3}{2}} + 24x^{\frac{1}{2}}$$
, -34 A1, A1 6 [9]

(a)
$$\frac{5-x}{x} = \frac{5}{x} - \frac{x}{x} \left(= \frac{5}{x} - 1 \right) (= 5x^{-1} - 1)$$
 M1

$$\frac{dy}{dx} = 8x, -5x^{-2}$$
 M1 A1, A1

When
$$x = 1$$
, $\frac{dy}{dx} = 3$ (*) A1 cso 5

(b) At
$$P, y = 8$$
B1Equation of tangent: $y - 8 = 3(x - 1)$ ($y = 3x + 5$) (or equiv.)M1 A1ft

(c) Where
$$y = 0, x = -\frac{5}{3}$$
 (= k) (or exact equiv.) M1 A1 2 [10]

13

Β1

9.	(a)	$y = 4x - x^2 \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 2x$	M1 A1	
		$x'' 4 - 2x'' = -2, \qquad x =$ x = 3, y = 3	M1 A1 [4]	4
10.	(a)	$(x - 3)^2$, +9 isw . $a = 3$ and $b = 9$ may just be written down with no method shown.	B1, M1	A1
	(b)	P is (3, 9)	B1	
	(c)	A = (0, 18) $\frac{dy}{dx} = 2x - 6, \text{ at } A m = -6$ Equation of tangent is $y = 18 = -6x$ (in any form)	B1 M1 A1 A1ft	Д
	(d)	Showing that line meets x axis directly below P, i.e. at $x = 3$.	A1cso [9]	4

EXTENSION QUESTIONS

Question 1

It is given that $y = x^{\frac{3}{2}} + \frac{48}{x}, x > 0$.

(a) Find the value of x and the value of y when $\frac{dy}{dx} = 0$.

[6]