

DIFFERENTIATION

Formulae to Learn

The Rules for Differentiation are

$y=f(x)$	$\frac{d y}{d x}=f^{\prime}(x)$
$a x^{n}$	nax^{n-1}
$a x$	a
a	0

The instructions are to either:
Find $\frac{d y}{d x}$ (or $f^{\prime}(x)$), or
Differentiate, or
Find the derived function, or
Find the derivative.
$\frac{d y}{d x}=f^{\prime}(x)$ finds the gradients of the tangents on the curve $y=f(x)$.

Gradients of tangents and normals are related by

$$
m_{\text {normal }}=-\frac{1}{m_{\text {tangent }}}
$$

The second derivative is $\frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x)$.
Which means differentiate $\frac{d y}{d x}$

STARTER QUESTIONS 1

1) Find the derived function of the following
a) x^{4}
b) $3 x^{4}$
c) $2 x^{6}$
d) $7 x^{5}$
e) $12 x^{8}$
f) $6 x^{8}$
g) $\frac{1}{3} x^{3}$
h) $\frac{2}{3} x^{3}$
i) $\frac{5}{7} x^{2}$
j) $-5 x^{4}$
2) Differentiate
a) x^{-3}
b) x^{-7}
c) $3 x^{-2}$
d) $5 x^{-1}$
e) $-3 x^{-2}$
f) $8 x^{-3}$
g) $3 x^{-2}$
h) $-\frac{2}{3} x^{-3}$
i) $\frac{5}{7} x^{-7}$
3) Differentiate with respect to x
a) $x^{\frac{3}{2}}$
b) $x^{\frac{7}{4}}$
c) $4 x^{\frac{7}{4}}$
d) $5 x^{\frac{3}{5}}$
e) $-7 x^{\frac{1}{2}}$
f) $-2 x^{\frac{2}{3}}$
g) $\frac{3}{5} x^{\frac{1}{3}}$
h) $\frac{5}{7} \mathrm{x}^{\frac{7}{8}}$
i) $-\frac{5}{12} x^{\frac{3}{5}}$
4) Differentiate with respect to x
a) $x^{-\frac{1}{2}}$
b) $x^{-\frac{3}{4}}$
c) $-4 x^{-\frac{1}{2}}$
d) $12 x^{-\frac{1}{3}}$
e) $-\frac{5}{2} x^{-\frac{2}{5}}$
5) Differentiate the following expressions with respect to x
a) $x^{2}+5 x+7$
b) $x^{2}-5 x+3$
c) $x^{3}+5 x^{2}-7 x+1$
d) $-4 x^{5}$
$+3 x$
e) $3 x^{4}+2 x^{3}-4 x^{2} \quad$ f) $\frac{2}{3} x^{5}+\frac{1}{2} x^{3}-6$
6) Find the gradient of the curve whose equation is
a) $y=x^{2}$ at the point $(2,4)$
b) $y=3 x^{2}-x+1$ at the point $(2,11)$
c) $y=x^{3}+2 x-3 \quad$ when $x=-1$
d) $y=7-2 x-x^{2}$ when $x=2$

STARTER QUESTIONS 2

1) Simplify and differentiate the following with respect to x
a) $y=x(5 x+8)$
b) $y=x^{3}\left(3 x^{2}+1\right)$
c) $y=3 x^{2}\left(x^{3}-5 x+4\right)$
d) $y=\frac{x^{2}+2 x}{x}$
e) $y=(x+3)(x-1)$
f) $y=(x-3)(x-4)$
g) $y=\frac{x^{2}+3 x+2}{x+2}$
h) $y=\frac{1}{x}$
i) $y=\frac{1}{x^{2}}$
j) $y=\sqrt{x}$
k) $y=\sqrt[3]{x}$
I) $y=\frac{3}{4} \sqrt[5]{x}$
m) $\mathrm{y}=\frac{1}{\sqrt{x}}$
n) $y=\frac{1}{\sqrt[3]{x}}$
2) For each of the following expressions find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
a) $y=3 x^{4}+\frac{4}{x^{2}}$
b) $y=3 x^{2}+2 x-4$
c) $y=3 \sqrt{x}$
d) $y=\frac{5}{\sqrt{x}}$

Past Paper Questions

(some of the following questions are part of longer questions)

1. (i) Given that $y=5 x^{3}+7 x+3$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(3)
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
2. Given that $y=6 x-\frac{4}{x^{2}}, x \neq 0$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
3. For the curve C with equation $y=f(x)$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{3}+2 x-7
$$

(a) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(b) Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \geq 2$ for all values of x.
(1)

Given that the point $P(2,4)$ lies on C,
(c) find y in terms of x,
(d) find an equation for the normal to C at P in the form $a x+b y+c=0$, where a, b and c are integers.
4. $\quad y=7+10 x^{\frac{3}{2}}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(2)
(Total 2 marks)
5. The curve C has equation $y=\frac{1}{3} x^{3}-4 x^{2}+8 x+3$.

The point P has coordinates (3,0).
(a) Show that P lies on C.
(1)
(b) Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.

Another point Q also lies on C. The tangent to C at Q is parallel to the tangent to C at P.
(c) Find the coordinates of Q.
6. The gradient of the curve C is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(3 x-1)^{2}
$$

The point $P(1,4)$ lies on C.
(a) Find an equation of the normal to C at P.
(4)
(b) Find an equation for the curve C in the form $y=\mathrm{f}(x)$.
(5)
(c) Using $\frac{\mathrm{d} y}{\mathrm{~d} x}=(3 x-1)^{2}$, show that there is no point on C at which the tangent is parallel to the line $y=1-2 x$.
7. The curve C with equation $y=f(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sqrt{ } x+\frac{12}{\sqrt{ } x}, \quad x>0 .
$$

(a) Show that, when $x=8$, the exact value of $\frac{d y}{d x}$ is $9 \sqrt{ } 2$.

The curve C passes through the point $(4,30)$.
(b) Using integration, find $f(x)$.
(6)
(Total 9 marks)
8. The curve C has equation $y=4 x^{2}+\frac{5-x}{x}, \quad x$ 团 0 . The point P on C has x-coordinate 1 .
(a) Show that the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at P is 3 .
(5)
(b) Find an equation of the tangent to C at P.
(3)

This tangent meets the x-axis at the point $(k, 0)$.
(c) Find the value of k.
(2)
(Total 10 marks)
9.

The curve C, with equation $y=x(4-x)$, intersects the x-axis at the origin O and at the point A, as shown in the diagram above. At the point P on C the gradient of the tangent is -2 .
(a) Find the coordinates of P.
(Total 4 marks)
10.

The diagram above shows part of the curve C with equation $y=x^{2}-6 x+18$. The curve meets the y-axis at the point A and has a minimum at the point P.
(a) Express $x^{2}-6 x+18$ in the form $(x-a)^{2}+b$, where a and b are integers.
(b) Find the coordinates of P.
(c) Find an equation of the tangent to C at A.

The tangent to C at A meets the x-axis at the point Q.
(d) Verify that $P Q$ is parallel to the y-axis.

Past Paper Solutions

1. (i)
(a) $15 x^{2}+7$

M1 A1 A1
3
(i) (b) $30 x$

B1ft 1
(ii) $x+2 x^{\frac{3}{2}}+x^{-1}+C$ A1: $x+C, \mathrm{~A} 1:+2 x^{\frac{3}{2}}, \mathrm{~A} 1:+x^{-1}$

M1 A1 A1 A1
2. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=6+8 x^{-3}$

M1 is for $x^{n} \rightarrow x^{n-1}$ in at least one term, 6 or x^{-3} is sufficient.
A1 is fully correct answer.
Ignore subsequent working.
[2]
3. (a) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=3 x^{2}+2$

M1 A1
(b) Since x^{2} is always positive, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \geq 2$ for all x.
(c) $y=\frac{x^{4}}{4}+x^{2}-7 x+(k) \quad[k$ not required here]

M1 A2 $(1,0)$

$$
4=\frac{2^{4}}{4}+2^{2}-14+k \quad k=10 \quad y=\frac{x^{4}}{4}+x^{2}-7 x+10
$$

M1 A1
(d) $x=2: \frac{\mathrm{d} y}{\mathrm{~d} x}=8+4-7=5$

$$
\text { Gradient of normal }=-\frac{1}{5}
$$

$$
y-4=-\frac{1}{5}(x-2) \quad x+5 y-22=0
$$

M1 A1
4. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=10 \times \frac{3}{2} x^{\frac{1}{2}}\left(=15 x^{\frac{1}{2}}\right)$

M1 A1

M1 A2 $(1,0)$
5. (a) $x=3, y=9-36+24+3(9-36+27=0$ is OK)
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{3} x^{2}-2 \times 4 \times x+8\left(=x^{2}-8 x+8\right)$

When $x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=9-24+8 \Rightarrow m=-7$ M1

Equation of tangent: $y-0=-7(x-3)$

$$
y=-7 x+21
$$

$1^{\text {st }}$ M1 some correct differentiation ($x^{n} \rightarrow x^{n-1}$ for one term) $1^{\text {st }}$ A1 correct unsimplified (all 3 terms) $2^{\text {nd }} M 1$ substituting $x_{p}(=3)$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ clear evidence $3^{\text {rd }}$ M1 using their m to find tangent at p.
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=m$ gives $x^{2}-8 x+8=-7$

$$
\left(x^{2}-8 x+15=0\right)
$$

$$
\begin{equation*}
(x-5)(x-3)=0 \tag{M1}
\end{equation*}
$$

$x=(3)$ or 5 A1
$x=5$
$\therefore y=\frac{1}{3} 5^{5}-4 \times 5^{2}+8 \times 5+3$
$y=-15 \frac{1}{3}$ or $-\frac{46}{3}$
A1 5
[11]
$1^{\text {st }}$ M1 forming a correct equation " their $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ gradient of their tangent"
$2^{\text {nd }}$ M1 for solving a quadratic based on their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ leading to x $=\ldots$ The quadratic could be simply $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
$3^{\text {rd }}$ M1 for using their x value (obtained from their quadratic) in y to obtain y coordinate. Must have one of the other two M marks to score this.

MR

For misreading $(0,3)$ for $(3,0)$ award B0 and then M1A1 as in scheme. Then allow all M marks but no A ft. (Max 7)
6. (a) Evaluate gradient at $x=1$ to get 4 , Grad. of normal $=-\frac{1}{m}\left(=-\frac{1}{4}\right)$ B1, M1

Equation of normal: $y-4=-\frac{1}{4}(x-1) \quad(4 y=-x+17)$
M1 A1 4
(b) $(3 x-1)^{2}=9 x^{2}-6 x+1 \quad$ (May be seen elsewhere)

Integrate: $\frac{9 x^{3}}{3}-\frac{6 x^{2}}{2}+x(+C)$
Substitute $(1,4)$ to find $c=\ldots, \quad c=3 \quad\left(y=3 x^{3}-3 x^{2}+x+3\right)$
M1, A1cso
(c) Gradient of given line is -2

Gradient of (tangent to) C is ≥ 0 (allow >0), so can never equal -2 .
7. (a) $\sqrt{8}=2 \sqrt{ } 2$ seen or used somewhere (possibly implied).
$\frac{12}{\sqrt{8}}=\frac{12 \sqrt{8}}{8}$ or $\frac{12}{2 \sqrt{2}}=\frac{12 \sqrt{2}}{4}$
Direct statement, e.g. $\frac{6}{\sqrt{2}}=3 \sqrt{2}$ (no indication of method) is MO.
At $x=8, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \sqrt{ } 8+\frac{12}{\sqrt{8}}=6 \sqrt{ } 2+3 \sqrt{ } 2=9 \sqrt{ } 2(*)$
(b) Integrating: $\frac{3 x^{3 / 2}}{(3 / 2)}+\frac{12 x^{1 / 2}}{(1 / 2)}(+C)$ (C not required)

M1 A1 A1

At $(4,30), \frac{3 \times 4^{3 / 2}}{(3 / 2)}+\frac{12 \times 4^{1 / 2}}{(1 / 2)}+C=30 \quad$ (C required)
$(\mathrm{f}(\mathrm{x})=) 2 x^{3 / 2}+24 x^{1 / 2},-34$
A1, A1 6
[9]
8. (a) $\frac{5-x}{x}=\frac{5}{x}-\frac{x}{x}\left(=\frac{5}{x}-1\right)\left(=5 x^{-1}-1\right)$

M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x,-5 x^{-2}$
M1 A1, A1
When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3$
(b) At $P, y=8$

B1
Equation of tangent: $y-8=3(x-1) \quad(y=3 x+5) \quad$ (or equiv.)
M1 A1ft
(c) Where $y=0, x=-\frac{5}{3} \quad(=k) \quad$ (or exact equiv.)
9. (a) $y=4 x-x^{2} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=4-2 x$
$" 4-2 x "=-2, \quad x=\ldots$
M1
$x=3, y=3 \quad$ A1
10. (a) $(x-3)^{2},+9$ isw . $a=3$ and $b=9$ may just be written down with no method shown.

B1, M1 A1
(b) P is $(3,9)$

B1
(c) $A=(0,18)$

B1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-6$, at $A \quad m=-6$
M1 A1
Equation of tangent is $y-18=-6 x \quad$ (in any form) A1ft 4
(d) Showing that line meets x axis directly below P , i.e. at $x=3$.

A1cso 1

EXTENSION QUESTIONS

Question 1

It is given that $y=x^{\frac{3}{2}}+\frac{48}{x}, x>0$.
(a) Find the value of x and the value of y when $\frac{d y}{d x}=0$.

