

ECUATIONS AND INECUALITES

1. Solve the simultaneous equations

$$
\begin{gathered}
x-2 y=1 \\
x^{2}+y^{2}=29
\end{gathered}
$$

2. Solve the simultaneous equations

$$
\begin{gathered}
x+y=2 \\
x^{2}+2 y=12 .
\end{gathered}
$$

3. Solve the simultaneous equations

$$
\begin{gathered}
x+y=3 \\
x^{2}+y=15 .
\end{gathered}
$$

4. Find the set of values of x for which

$$
(2 x+1)(x-2)>2(x+5)
$$

5. Find the set of values for x for which
(a) $6 x-7<2 x+3$,
(b) $2 x^{2}-11 x+5<0$,
(c) both $6 x-7<2 x+3$ and $2 x^{2}-11 x+5<0$.
6. Solve the inequality

$$
10+x^{2}>x(x-2) .
$$

7. Draw a picture of a giraffe flying a biplane
8. (a) Show that eliminating y from the equations

$$
\begin{aligned}
& 2 x+y=8 \\
& 3 x^{2}+x y=1
\end{aligned}
$$

produces the equation

$$
\begin{equation*}
x^{2}+8 x-1=0 \tag{2}
\end{equation*}
$$

(b) Hence solve the simultaneous equations

$$
\begin{aligned}
& 2 x+y=8 \\
& 3 x^{2}+x y=1
\end{aligned}
$$

giving your answers in the form $a+b \sqrt{ } 17$, where a and b are integers.
9. (a) Given that $3^{x}=9^{y-1}$, show that $x=2 y-2$.
(b) Solve the simultaneous equations

$$
\begin{align*}
& x=2 y-2, \\
& x^{2}=y^{2}+7 . \tag{6}
\end{align*}
$$

10. Solve the simultaneous equations

$$
\begin{aligned}
& x-3 y+1=0 \\
& x^{2}-3 x y+y^{2}=11
\end{aligned}
$$

11. The curve C has equation $y=x^{2}-4$ and the straight line l has equation $y+3 x=0$.
(a) In the space below, sketch C and l on the same axes.
(b) Write down the coordinates of the points at which C meets the coordinate axes.
(c) Using algebra, find the coordinates of the points at which l intersects C.
12. Find the set of values of x for which
(a) $3(2 x+1)>5-2 x$,
(b) $2 x^{2}-7 x+3>0$,
(c) both $3(2 x+1)>5-2 x$ and $2 x^{2}-7 x+3>0$.

SOLITIONS

1. $x=1+2 y$ and $\mathrm{sub} \rightarrow(1+2 y)^{2}+y^{2}=29$
$\Rightarrow 5 y^{2}+4 y-28(=0)$
i.e. $(5 y+14)(y-2)=0$
$(y=) 2$ or $-\frac{14}{5}$ (o.e.)
$y=2, \Rightarrow x=1+4=5 ; y=-\frac{14}{5} \Rightarrow x=-\frac{23}{5}$ (o.e)
(both) A1
2. $\quad x^{2}+2(2-x)=12 \quad$ or $\quad(2-y)^{2}+2 y=12 \quad$ (Eqn. in x or y only)
$x^{2}-2 x-8=0 \quad$ or $\quad y^{2}-2 y-8=0 \quad$ (Correct 3 term version)
(Allow, e.g. $x^{2}-2 x=8$)
$(x-4)(x+2)=0 \quad x=\ldots \quad$ or $\quad(y-4)(y+2)=0 \quad y=\ldots$
$x=4, \quad x=-2 \quad$ or $\quad y=4, \quad y=-2$
$y=-2, \quad y=4 \quad$ or $\quad x=-2, \quad x=4 \quad$ (M: attempt one, A: both)
M1 A1ft
3. Forming equation in x or y by attempt to eliminate one variable
$(3-y)^{2}+y=15$ or $x^{2}+(3-x)=15$
M1
$y^{2}-5 y-6=0$ or $x^{2}-x-12=0$ (Correct 3 term version)
Attempt at solution i.e. solving 3 term quadratic: $(y-6)(y+1)=0, \quad y=\ldots$ or $(x-4)(x+3)=0, \quad x=\ldots$
or correct use of formula or
correct use of completing the square
$x=4$ and $x=-3$ or $y=-1 \quad$ and $y=6$
M1
A1
M1 A1 ft
Finding the values of the other coordinates (M attempt one, A both)
4. $(2 x+1)(x-2)>2(x+5)$
$2 x^{2}-4 x+x-2>2 x+10$
M1 A1
$2 x^{2}-5 x-12>0$
A1 ft
M1 A1 ft
$x<-\frac{3}{2}, x>4$
[6]

M1 A1
7
[7]
5. (a) $6 x-2 x<3+7 \quad x<2 \frac{1}{2}$

M1 A1 2
(b) $\quad(2 x-1)(x-5) \quad$ Critical values $\frac{1}{2}$ and 5

M1 A1
$\frac{1}{2}<x<5$
M1 A1 ft
(c) $\frac{1}{2}<x<2 \frac{1}{2}$
6. $10+x^{2}>x^{2}-2 x$
8. (a) $y=8-2 x$

$$
\begin{aligned}
& 3 x^{2}+x(8-2 x)=1 \text { M1 } \\
& x^{2}+8 x-1=0
\end{aligned}
$$

A1

M1 A1
B1
$\sqrt{68}=2 \sqrt{17} ; x=-4+2 \sqrt{17} \quad$ or $x=-4-2 \sqrt{17}$ $y=8-2(-4+\sqrt{17})=16-2 \sqrt{17}$ or $y=16+2 \sqrt{17}$

M1 A1
9. (a) $\quad 3^{x}=3^{2(y-1)} \quad x=2(y-1)(*)$
(b) $(2 y-2)^{2}=y^{2}+7, \quad 3 y^{2}-8 y-3=0$

$$
(3 y+1)(y-3)=0, y=\ldots(\text { or correct substitution in formula })
$$

M1

$$
y=-\frac{1}{3}, \quad y=3
$$

$$
x=-\frac{8}{3}, \quad x=4
$$

10. $x=3 y-1$ (n.b. Method mark, so allow, e.g. $x=3 y+1)$
$(3 y-1)^{2}-3 y(3 y-1)+y^{2}=11$ (Substitution, leading to an M1 equation in only one variable)
$y^{2}-3 y-10=0(3$ terms correct, " $=0$ " possibly implied $)$ A1

$$
\begin{array}{lll}
(y-5)(y+2)=0 & y=5 & y=-2 \\
x=14 & x=-7
\end{array}
$$

(If not exact, f.t. requires at least 1 d.p. accuracy).
Alternative approach gives: $y=\frac{x+1}{3}, x^{2}-7 x-98=0$.
11. (a)

C : "U" shape
B1
C : Position
B1
l : Straight line through origin with negative gradient
(b) $(2,0),(-2,0),(0,-4)$

2 of these correct:
All 3 correct:
(c) $x^{2}-4=-3 x$
$x^{2}+3 x-4=0 \quad(x+4)(x-1)=0 \quad x=\ldots$
$x=-4 \quad x=1$
$y=12 \quad y=-3 \quad$ M: Attempt one y value
12. (a) $6 x+3>5-2 x \Rightarrow 8 x>2$
$x>\frac{1}{4}$ or 0.25 or $\frac{2}{8}$
M1 Multiply out and collect terms (allow one slip and allow use of $=$ here)
(b) $(2 x-1)(x-3)(>0)$

Critical values $x=\frac{1}{2}, 3$

Choosing "outside" region
$x>3$ or $x<\frac{1}{2}$
$1^{s t}$ M1 Attempting to factorise $3 T Q \rightarrow x=\ldots$
$2^{\text {nd }}$ M1 Choosing the outside region
$2^{\text {nd }}$ A1 f.t. f.t. their critical values N.B. $\left(x>3, x>\frac{1}{2}\right.$ is MOAO)
For $p<x<q$ where $p>q$ penalise the final Al in (b)
(c) $x>3$ or $\frac{1}{4}<x<\frac{1}{2}$

B1f.t. B1f.t.

f.t. their answers to (a) and (b)

$I^{\text {st }}$ B1 a correct f.t. leading to an infinite region
$2^{\text {nd }}$ B1 a correct f.t. leading to a finite region
Penalise \leq or \geq once only at first offence.
e.g.
(a)
(b)
(c) Mark
$x>\frac{1}{4} \quad \frac{1}{2}<x<3 \quad \frac{1}{2}<x<3 \quad$ BO B1
$x>\frac{1}{4} \quad x>3, x>\frac{1}{2} \quad x>3 \quad$ Bl BO

