

$$x^2 - 8x - 29 \equiv (x+a)^2 + b,$$

where *a* and *b* are constants.

- (a) Find the value of *a* and the value of *b*.
- (b) Hence, or otherwise, show that the roots of

$$x^2 - 8x - 29 = 0$$

are $c \pm d\sqrt{5}$, where c and d are integers to be found.

(3) (Total 6 marks)

(3)

2. (a) Solve the equation $4x^2 + 12x = 0$.

$$f(x) = 4x^2 + 12x + c,$$

where *c* is a constant.

(b) Given that f(x) = 0 has equal roots, find the value of *c* and hence solve f(x) = 0.

(4) (Total 7 marks)

(3)

3. $f(x) = x^2 - kx + 9$, where k is a constant.

(a)	Find the set of values of <i>k</i> for which the equation $f(x) = 0$ has no real solutions.	(4)				
Given that $k = 4$,						
(b)	express $f(x)$ in the form $(x-p)^2 + q$, where <i>p</i> and <i>q</i> are constants to be found,	(3)				
(c)	write down the minimum value of $f(x)$ and the value of x for which this occurs.	(2) (Total 9 marks)				

4. The function f is even and has domain \mathbb{R} . For $x \ge 0$, $f(x) = x^2 - 4ax$, where a is a positive constant.

(a) In the space below, sketch the curve with equation y = f(x), showing the coordinates of all the points at which the curve meets the axes.

(3)

(b) Find, in terms of *a*, the value of f(2a) and the value of f(-2a). (2)

Given that a = 3,

(c) use algebra to find the values of *x* for which f(x) = 45.

(4)

(Total 9 marks)

The diagram above shows part of the curve C with equation $y = x^2 - 6x + 18$. The curve meets the y-axis at the point A and has a minimum at the point P.

(a)	Express $x^2 - 6x + 18$ in the form $(x - a)^2 + b$, where <i>a</i> and <i>b</i> are integers.	(3)		
(b)	Find the coordinates of <i>P</i> .	(2)		
(c)	Find an equation of the tangent to <i>C</i> at <i>A</i> .	(4)		
The tangent to C at A meets the x-axis at the point Q .				
(d)	Verify that <i>PQ</i> is parallel to the <i>y</i> -axis.	(1)		
The shaded region R in the diagram is enclosed by C , the tangent at A and the line PQ .				

(e) Use calculus to find the area of *R*.

(5) (Total 15 marks) 6. Given that the equation $kx^2 + 12x + k = 0$, where k is a positive constant, has equal roots, find the value of k.

(Total 4 marks)

7. Given that

$$f(x) = x^2 - 6x + 18, \quad x \ge 0,$$

(a) express f(x) in the form $(x - a)^2 + b$, where *a* and *b* are integers.

The curve *C* with equation y = f(x), $x \ge 0$, meets the *y*-axis at *P* and has a minimum point at *Q*.

(b) Sketch the graph of *C*, showing the coordinates of *P* and *Q*.

(4)

(3)

The line y = 41 meets *C* at the point *R*.

(c) Find the *x*-coordinate of *R*, giving your answer in the form $p + q\sqrt{2}$, where *p* and *q* are integers.

(5) (Total 12 marks)

SCLUTIONS

1. $x^2 - x^2$	(a) 8x - 29	$D = (x \pm 4)^2 - 16(-29), b = -45$ B1 is for $(x - 4)^2$ or $a = -4$ M1 requires $(x \pm p)^2 - p^2(\pm 29), p \neq 0$, A1 is for $b = -45$ Answer only: full marks. Note: Can score BOM1A1 [e.g. $(x + 4)^2 - 45$] Comparing coefficients: M1 is for comparing x coefficients and constant term	<i>a</i> = – 4 B1 M1A1 3
	(b)	$x-4 = (\pm \sqrt{45}), [\sqrt{45} = 3\sqrt{5}]$ $x = 4 \pm 3\sqrt{5}$ cao $c = 4, d = 3$	M1 A1 A1 3
	Or:	$x = \frac{8 \pm \sqrt{64 + 116}}{2}, \ \sqrt{180} = 6\sqrt{5}$	M1 A1 [6]
2.	(a)	4x(x + 3) = 0, x = (or use of quadratic formula) x = 0 $x = -3$	M1 A1 A1 3
	(b)	Using $b^2 - 4ac = 0$ or other method, proceed to $c =$ c = 9 (2x + 3)(2x + 3) = 0 $x =$ (or other method to solve a 3-term quadratic) $x = -\frac{3}{2}$	M1 A1 M1 A1 4
3.		$b^{2} - 4ac = (-k)^{2} - 36 = k^{2} - 36$ Or, (completing the square), $\left(x - \frac{1}{2}k\right)^{2} = \frac{1}{4}k^{2} - 9$ Or, if b^{2} and $4ac$ are compared directly, [M1] for finding both [A1] for k^{2} and 36. No real solutions: $k^{2} - 36 < 0$, $-6 < k < 6$ (ft their "36") $x^{2} - 4x + 9 = (x - 2)^{2}$	[7] M1 A1 M1 A1 M1, A1ft
	(b)	$x^{2} - 4x + 9 = (x - 2)^{2} \dots (p = 2)$ Ignore statement $p = -2$ if otherwise correct. $x^{2} - 4x + 9 = (x - 2)^{2} - 4 + 9 = (x - 2)^{2} + 5 \qquad (q = 5)$ M: Attempting $(x \pm a)^{2} \pm b \pm 9, a \neq 0, b \neq 0$.	B1 M1 A1 3
	(c)	Min value 5 (or just q), occurs where $x = 2$ (or just p) <u>Alternative:</u> $f'(x) = 2x - 4$ (Min occurs where) $x = 2$ Where $x = 2$, $f(x) = 5$	B1ft, B1ft [B1] [B1ft] [9]

4. (a)
4. (a)
5. (a)
(c)
$$A = (0, 18)$$

(c) $A = (0, 18)$
(c) $A = (1, 18)$
(c) A

6. Attempt to use discriminant $b^2 - 4ac$ Should have no x'sM1(Need not be equated to zero)(Could be within the quadratic formula) $144 - 4 \times k \times k = 0$ or $\sqrt{144 - 4 \times k \times k} = 0$ A1Attempt to solve for k(Could be an inequality)M1k = 6[4]

7. (a)
$$x^2 - 6x + 18 = (x - 3)^2, +9$$
 B1, M1 A1

"U"-shaped parabola Vertex in correct quadrant *P*: (0, 18) (or 18 on y-axis) *Q*: (3, 9)

(c)
$$x^2 - 6x + 18 = 41$$
 or $(x - 3)^2 + 9 = 41$ M1
Attempt to solve 3 term quadratic $x = ...$ M1
 $x = \frac{6 \pm \sqrt{36 - (4 \times -23)}}{2}$ (or equiv.) A1

$$\sqrt{128} = \sqrt{64} \times \sqrt{2} \qquad \text{(or surd manipulation } \sqrt{2a} = \sqrt{2}\sqrt{a} \text{)} \qquad \text{M1}$$

$$3 + 4\sqrt{2} \qquad \qquad \text{[12]}$$

4

M1

B1 B1ft

A1ft

4