P

cuadratics

1.

$$
x^{2}-8 x-29 \equiv(x+a)^{2}+b
$$

where a and b are constants.
(a) Find the value of a and the value of b.
(b) Hence, or otherwise, show that the roots of

$$
x^{2}-8 x-29=0
$$

are $c \pm d \sqrt{ } 5$, where c and d are integers to be found.
2. (a) Solve the equation $4 x^{2}+12 x=0$.

$$
\begin{equation*}
\mathrm{f}(x)=4 x^{2}+12 x+c \tag{3}
\end{equation*}
$$

where c is a constant.
(b) Given that $\mathrm{f}(x)=0$ has equal roots, find the value of c and hence solve $\mathrm{f}(x)=0$.
3. $\mathrm{f}(x)=x^{2}-k x+9$, where k is a constant.
(a) Find the set of values of k for which the equation $\mathrm{f}(x)=0$ has no real solutions.

Given that $k=4$,
(b) express $\mathrm{f}(x)$ in the form $(x-p)^{2}+q$, where p and q are constants to be found,
(c) write down the minimum value of $\mathrm{f}(x)$ and the value of x for which this occurs.
4. The function f is even and has domain . For $x \geq 0, \mathrm{f}(x)=x^{2}-4 a x$, where a is a positive constant.
(a) In the space below, sketch the curve with equation $y=\mathrm{f}(x)$, showing the coordinates of all the points at which the curve meets the axes.
(b) Find, in terms of a, the value of $\mathrm{f}(2 a)$ and the value of $\mathrm{f}(-2 a)$.

Given that $a=3$,
(c) use algebra to find the values of x for which $\mathrm{f}(x)=45$.
5.

The diagram above shows part of the curve C with equation $y=x^{2}-6 x+18$. The curve meets the y-axis at the point A and has a minimum at the point P.
(a) Express $x^{2}-6 x+18$ in the form $(x-a)^{2}+b$, where a and b are integers.
(b) Find the coordinates of P.
(c) Find an equation of the tangent to C at A.

The tangent to C at A meets the x-axis at the point Q.
(d) Verify that $P Q$ is parallel to the y-axis.

The shaded region R in the diagram is enclosed by C, the tangent at A and the line $P Q$.
(e) Use calculus to find the area of R.
6. Given that the equation $k x^{2}+12 x+k=0$, where k is a positive constant, has equal roots, find the value of k.
7. Given that

$$
\mathrm{f}(x)=x^{2}-6 x+18, \quad x \geq 0
$$

(a) express $\mathrm{f}(x)$ in the form $(x-a)^{2}+b$, where a and b are integers.

The curve C with equation $y=\mathrm{f}(x), x \geq 0$, meets the y-axis at P and has a minimum point at Q.
(b) Sketch the graph of C, showing the coordinates of P and Q.

The line $y=41$ meets C at the point R.
(c) Find the x-coordinate of R, giving your answer in the form $p+q \sqrt{ }$ 2, where p and q are integers.

SOLUTIONS

1. (a)
$x^{2}-8 x-29 \equiv(x \pm 4)^{2}-16(-29), b=-45$
B1 is for $(x-4)^{2}$ or $a=-4$
M1 requires $(x \pm p)^{2}-p^{2}(\pm 29), p \neq 0$,
A1 is for $b=-45$
Answer only: full marks.
Note: Can score B0M1A1 [e.g. $\left.(x+4)^{2}-45\right]$
Comparing coefficients: M1 is for comparing x coefficients and constant term
(b) $\quad x-4=(\pm \sqrt{45}),[\sqrt{45}=3 \sqrt{5}]$
$x=4 \pm 3 \sqrt{5}$ cao $c=4, d=3$

Or: $\quad x=\frac{8 \pm \sqrt{64+116}}{2}, \sqrt{180}=6 \sqrt{5}$
2. (a) $4 x(x+3)=0, x=\ldots$ (or use of quadratic formula) M1 $x=0 \quad x=-3$

A1 A1 3
(b) Using $b^{2}-4 a c=0$ or other method, proceed to $c=\ldots$

M1
$c=9$
A1
$(2 x+3)(2 x+3)=0 x=\ldots($ or other method to solve a 3-term quadratic $)$
$x=-\frac{3}{2}$
3. (a) $b^{2}-4 a c=(-k)^{2}-36=k^{2}-36$

Or, (completing the square), $\left(x-\frac{1}{2} k\right)^{2}=\frac{1}{4} k^{2}-9$
Or, if b^{2} and $4 a c$ are compared directly, [M1] for finding both
[A1] for k^{2} and 36 .
M1 A1
No real solutions: $k^{2}-36<0, \quad-6<k<6 \quad$ (ft their " 36 ")
(b) $x^{2}-4 x+9=(x-2)^{2} \ldots \ldots \ldots . \quad(p=2)$

Ignore statement $p=-2$ if otherwise correct.

$$
\begin{gathered}
x^{2}-4 x+9=(x-2)^{2}-4+9=(x-2)^{2}+5 \quad(q=5) \\
\text { M: Attempting }(x \pm a)^{2} \pm b \pm 9, a \neq 0, b \neq 0 .
\end{gathered}
$$

(c) Min value 5 (or just q), occurs where $x=2$ (or just p)

Alternative: $\mathrm{f}^{\prime}(x)=2 x-4 \quad$ (Min occurs where) $x=2$
Where $x=2, \mathrm{f}(x)=5$
4. (a)

$(4 a, 0) \&(-4 a, 0)$ and shape at $(0,0)$
(b) $\mathrm{f}(2 a)=(2 a)^{2}-4 a(2 a)=4 a^{2}-8 a^{2}=-4 a^{2}$
$\mathrm{f}(-2 a)[=\mathrm{f}(2 a)(\because$ even function $)]=-4 a^{2}$
B1 ft their $f(2 a)$
B1 ft 2
(c) $\quad a=3$ and $f(x)=45 \Rightarrow 45=x^{2}-12 x \quad(x>0)$
$0=x^{2}-12 x-45$
$0=(x-15)(x+3)$
M1
$x=15$ (or -3)
\therefore Solutions are $x= \pm 15 \quad$ only
M1 Attempt 3TQ in x
M1 Attempt to solve
A1 At least $x=15$ can ignore $x=-3$
A1 To get final A1 must make clear only answers are ± 15.
5. (a) $(x-3)^{2},+9$ isw . $a=3$ and $b=9$ may just be written
down with no method shown.
(b) $\quad \mathrm{P}$ is $(3,9)$
(c) $\mathrm{A}=(0,18)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-6$, at $A \quad m=-6$
Equation of tangent is $y-18=-6 x$ (in any form)
(d) Showing that line meets x axis directly below P , i.e. at $x=3$.
(e) $\quad A=\int x^{2}-6 x+18 x=\left[\frac{1}{3} x^{3}-3 x^{2}+18 x\right]$

Substituting $x=3$ to find area A under curve $A[=36]$
Area of $R=A$ - area of triangle $=A-\frac{1}{2} \times 183,=9$
Alternative: $\int x^{2}-6 x+18-(18-6 x) \mathrm{d} x$ M1

$$
\begin{array}{ll}
=\frac{1}{3} x^{3} & \text { M1 A1 ft } \\
\text { Use } x=3 \text { to give answer } 9 & \text { M1 A1 }
\end{array}
$$

6. Attempt to use discriminant $b^{2}-4 a c \quad$ Should have no x 's
(Need not be equated to zero) (Could be within the quadratic formula)
$144-4 \times k \times k=0 \quad$ or $\quad \sqrt{144-4 \times k \times k}=0$

Attempt to solve for $k \quad$ (Could be an inequality) M1
$k=6$
7. (a) $x^{2}-6 x+18=(x-3)^{2},+9$

B1, M1 A1
(b)

"U"-shaped parabola M1
Vertex in correct quadrant
A1ft
$P:(0,18)$ (or 18 on y-axis)
B1
$Q:(3,9)$
B1ft 4
(c) $x^{2}-6 x+18=41$ or $(x-3)^{2}+9=41 \quad$ M1

Attempt to solve 3 term quadratic $x=\ldots \quad$ M1
$x=\frac{6 \pm \sqrt{36-(4 \times-23)}}{2}$
(or equiv.)
A1
$\sqrt{ } 128=\sqrt{ } 64 \times \sqrt{ } 2 \quad$ (or surd manipulation $\sqrt{2 a}=\sqrt{2} \sqrt{a}$)
M1
$3+4 \sqrt{ } 2$
A1 5
[12]

