
1.

The diagram above shows the sector $O A B$ of a circle of radius $r \mathrm{~cm}$. The area of the sector is 15 cm^{2} and $\angle A O B=1.5$ radians.
(a) Prove that $r=2 \sqrt{ } 5$.
(b) Find, in cm , the perimeter of the sector $O A B$.

The segment R, shaded in the diagram above, is enclosed by the arc $A B$ and the straight line $A B$.
(c) Calculate, to 3 decimal places, the area of R.
2.

A fence from a point A to a point B is in the shape of an $\operatorname{arc} A B$ of a circle with centre O and radius 45 m , as shown in the diagram. The length of the fence is 63 m .
(a) Show that the size of $\angle A O B$ is exactly 1.4 radians.

The points C and D are on the lines $O B$ and $O A$ respectively, with $O C=O D=30 \mathrm{~m}$.
A plot of land $A B C D$, shown shaded in the figure above, is enclosed by the arc $A B$ and the straight lines $B C, C D$ and $D A$.
(b) Calculate, to the nearest m^{2}, the area of this plot of land.
3.

This diagram shows the triangle $A B C$, with $A B=8 \mathrm{~cm}, A C=11 \mathrm{~cm}$ and $\angle B A C=0.7$ radians. The $\operatorname{arc} B D$, where D lies on $A C$, is an arc of a circle with centre A and radius 8 cm . The region R, shown shaded in the diagram, is bounded by the straight lines $B C$ and $C D$ and the $\operatorname{arc} B D$.

Find
(a) the length of the arc $B D$,
(b) the perimeter of R, giving your answer to 3 significant figures,
(c) the area of R, giving your answer to 3 significant figures.
4.

In $\triangle A B C, A B=2 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $B C=2 \sqrt{ } 7 \mathrm{~cm}$.
(a) Use the cosine rule to show that $\angle B A C=\frac{\pi}{3}$ radians.

The circle with centre A and radius 2 cm intersects $A C$ at the point D, as shown in the diagram above.

Calculate
(b) the length, in cm , of the arc $B D$,
(c) the area, in cm^{2}, of the shaded region $B C D$.
5.

The diagram above shows the sector $A O B$ of a circle, with centre O and radius 6.5 cm , and $\angle A O B=0.8$ radians.
(a) Calculate, in cm^{2}, the area of the sector $A O B$.
(b) Show that the length of the chord $A B$ is 5.06 cm , to 3 significant figures.

The segment R, shaded in the diagram above, is enclosed by the $\operatorname{arc} A B$ and the straight line $A B$.
(c) Calculate, in cm, the perimeter of R.
6.

A flat plate S, which is part of a child's toy, is shown in the diagram above. The points A, B and C are the vertices of an equilateral triangle and the distance between A and B is $2 a$. The circular arc $A B$ has centre C and radius $2 a$. The circular arcs $B C$ and $C A$ have centres at A and B respectively and radii $2 a$.
(a) Find, in terms of π and a, the perimeter of S.
(b) Prove that the area of the plate S is

$$
2 a^{2}(\pi-\sqrt{3})
$$

SOBOTIOMSB

1.

(a) $\begin{aligned} \frac{1}{2} r^{2} \theta & =\frac{1}{2} r^{2} \times 1.5=15 \\ r^{2}=20 & =\sqrt{ }(4 \times 5) \quad r=2 \sqrt{ } 5\left(^{*}\right)\end{aligned}$

M1 A1
A1 3
(b) $r \theta+2 r=3 \sqrt{ } 5+4 \sqrt{ } 5=7 \sqrt{ } 5 \mathrm{~cm}$ (or 15.7, or a.w.r.t 15.65 ...)
(c) $\triangle O A B: \quad \frac{1}{2} r^{2} \sin \theta=10 \sin 1.5(=9.9749 \ldots)$

Segment area $=15-\triangle O A B=5.025 \mathrm{~cm}^{2}$
2. (a) $r \theta=45 \theta=63, \theta=1.4$ (*)
M1 is for applying correct formula or quoting and attempting to use correct formula

M1A1 2
(b) Area of sector $O A B=\frac{1}{2} r^{2} \theta=\frac{1}{2} 45^{2} \times 1.4 \quad(=1417.5)$ M1A1

Area of triangle $O C D=\frac{1}{2} 30^{2} \times \sin 1.4 \quad(=443.45)$ M1A1

Shaded area $=1417.5-443.45 \ldots=974 \mathrm{~m}^{2}$ cao
For each area
M1 is for attempting to use correct formula or complete
method in case of $\Delta(*)$
Al is for a numerically correct statement (answer is not required

- just there as check)

Final A1 is for 974 only.
e.g. splitting triangle into two triangles:

For guidance

3. (a) $r \theta=8 \times 0.7,=5.6(\mathrm{~cm})$

M1, A1 2
(b) $B C^{2}=8^{2}+11^{2}-2 \times 8 \times 11 \cos 0.7$
$\Rightarrow B C=7.098$
\Rightarrow Perimeter $=(\mathrm{a})+(11-8)+B C,=15.7(\mathrm{~cm})$
M1, A1cao

M1, A1

M1, A1
Sector $=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 8^{2} \times 0.7$
A1 5
[11]
4. (a) $\cos A=\frac{6^{2}+2^{2}-(2 \sqrt{7})^{2}}{2 \times 6 \times 2}$
$\cos A=\frac{1}{2} \quad A=\frac{\pi}{3} \operatorname{radians}\left({ }^{*}\right)$
M1 A1

A1 3
(b) $\quad r \theta=\frac{2 \pi}{3} \quad(=2.09)$ (Exact or at least 3 s.f.)
(c) Sector $A B D: \frac{1}{2} r^{2} \theta=\frac{1}{2} \times 2^{2} \times \frac{\pi}{3} \quad\left(=\frac{2 \pi}{3} \approx 2.094 \ldots\right)$

Triangle $A C B: \frac{1}{2} \times 2 \times 6 \times \sin \frac{\pi}{3} \quad(=3 \sqrt{3} \approx 5.196 \ldots)$
M1
Triangle - Sector $=3 \sqrt{3}-\frac{2 \pi}{3}(=3.10175 \ldots)$
Allow 3.1 or a.w.r.t. 3.10
5. (a) $\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 6.5^{2} \times 0.8=16.9 \quad$ (a.w.r.t. if changed to degrees) M1 A1 2
(b) $\sin 0.4=\frac{x}{6.5}, x=6.5 \sin 0.4,($ where x is half of $A B)$

M1, A1

$$
\text { (n.b. } 0.8 \mathrm{rad}=45.8^{\circ} \text {) }
$$

$$
\begin{equation*}
A B=2 x=5.06 \quad \text { (a.w.r.t.) } \tag{*}
\end{equation*}
$$

Alternative: $A B^{2}=6.5^{2}+6.5^{2}-2 \times 6.5 \times 6.5 \cos 0.8$

$$
A B=\sqrt{6.5^{2}+6.5^{2}-2 \times 6.5 \times 6.5 \cos 0.8}
$$

$$
A B=5.06
$$

(c) $r \theta+5.06=(6.5 \times 0.8)+5.06=10.26($ a.w.r.t) $\quad($ or 10.3$)$

M1 A1 2
6. (a) $\operatorname{Arc} A B=2 a \times \frac{\pi}{3}$ (using $\left.r \theta\right)$

Perimeter of $S=3 \times \frac{2 a \pi}{3}=2 a \pi$
(b) Area of sector $A B C=\frac{1}{2}(2 a)^{2} \frac{\pi}{3}=2 a^{2} \frac{\pi}{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2}(2 a)^{2} \sin \frac{\pi}{3}=a^{2} \sqrt{ } 3 \quad \text { M1 A1 }
$$

$$
\text { Area of segment }=2 a^{\frac{\pi}{3}}-a^{2} \sqrt{3} \quad \quad \text { M1 }
$$

Area of $S=3$ (Area of segment $A B C)+($ Area of triangle $A B C) \quad$ M1

$$
\begin{aligned}
& =2 \pi a^{2}-3 a^{2} \sqrt{3}+a^{2} \sqrt{3} \\
& =2 a^{2}(\pi-\sqrt{ } 3)
\end{aligned}
$$

A1 B1

$$
\mathrm{A} 1
$$

HOMEWORS

DUE 80 OW

7.

The diagram above shows a logo $A B D$.
The logo is formed from triangle $A B C$. The mid-point of $A C$ is D and $B C=A D=D C=6 \mathrm{~cm}$. $\angle B C A=0.4$ radians. The curve $B D$ is an arc of a circle with centre C and radius 6 cm .
(a) Write down the length of the $\operatorname{arc} B D$.
(b) Find the length of $A B$.
(c) Write down the perimeter of the logo $A B D$, giving your answer to 3 significant figures.
8.

The diagram above shows the cross-section $A B C D$ of a chocolate bar, where $A B, C D$ and $A D$ are straight lines and M is the mid-point of $A D$. The length $A D$ is 28 mm , and $B C$ is an arc of a circle with centre M.

Taking A as the origin, B, C and D have coordinates $(7,24),(21,24)$ and $(28,0)$ respectively.
(a) Show that the length of $B M$ is 25 mm .
(b) Show that, to 3 significant figures, $\angle B M C=0.568$ radians.
(c) Hence calculate, in mm^{2}, the area of the cross-section of the chocolate bar.

Given that this chocolate bar has length 85 mm ,
(d) calculate, to the nearest cm^{3}, the volume of the bar.

