REMSION CUESTIONS

Invisibiling is my cruenaikes sumes pover

SECUEMCES, SERUES, BMOWLALANDBASIC DIFFERENTIATION

GRITHTETIESEMUEMEES EPSIETUESNTHS

1) An arithmetic sequence is defined $a=5$ and $d=3$. Write down the first 6 terms.
2) An arithmetic sequence is defined $a=13$ and $d=-10$. Write down the first 6 terms.
3) An arithmetic sequence is defined $a=1000$ and $d=55$. Write down the first 6 terms.
4) Write down the value of a and d for the following sequences:
a) $4,6,8,10, \ldots \ldots$.
b) $6,16,26,36, \ldots .$.
c) $50,49.5,49,48.5, \ldots . .$.
d) $\frac{2}{5}, \frac{4}{5}, 1 \frac{1}{5}, \ldots$.
5) The sequence $90,88.5,87,85.5, \ldots . . .$. is arithmetic.
a) Find the $20^{\text {th }}$ term.
b) Find an expression for the $\mathrm{n} t \mathrm{t}$ term.
c) Find the value of n for which the n th term in the sequence is 42 .
1. The first term of an arithmetic progression is 6 and the fifth term is 12 . The progression has n terms and the sum of all the terms is 90 . Find the value of n.
2. The 1 st term of an arithmetic progression is a and the common difference is d, where $d \neq 0$.
(a) Write down expressions, in terms of a and d, for the 5th term and the 15 th term.
(b) The first two terms in an arithmetic progression are 5 and 9. The last term in the progression is the only term which is greater than 200 . Find the sum of all the terms in the progression.

	+		-
	® 2 + + + 2 2 2 +		

GEDCIETEICSEFIES EASICRUESTIDNS

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$$
S_{\infty}=\frac{a}{1-r}
$$

Find the total of these geometric series:

1. $1+2+4+8+16+32+64+128$
2. $32+16+8+4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$
3. $4-12+36-108+324-972$
4. $3125+625+125+25+5+\cdots \quad n=\infty$
5. $192+48+12+3+\cdots \quad n=\infty$

EmOMIL

EASICOUESTHONS

$$
\begin{aligned}
& (a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{1} a^{n-1} b+\ldots \ldots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n} \\
& \text { Where }\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{(n-r)!r!} \text { which is the } n^{\text {th }} \text { row and } r^{\text {th }} \text { position of Pascal's Triangle }
\end{aligned}
$$

1.

a. Use the binomial theorem to work out $(a+b)^{3}$
b. Now use your answer to work out $(x+2)^{3}$
2.
a. Use the binomial theorem to work out $(a+b)^{4}$
b. Now use your answer to work out $(2 x+3)^{4}$

3.
a. Use the binomial theorem to work out $(a+b)^{5}$
b. Now use your answer to work out $\left(\frac{\mathrm{x}}{2}+1\right)^{5}$
4.
a. Use the binomial theorem to work out $(a+b)^{5}$
b. Now use your answer to work out $(x-2)^{5}$

FUNETIONS

EASICGUESTHOMS

1. Give an example of a one-to-one function and a many-to-one function
2. If $f(x)=3 x+2,($ Domain: $x>0)$ and $g(x)=x^{2}+5$ (Domain: $\left.x \in \mathbb{R}\right)$
a. What sort of functions are these?
b. What is the range of $f(x)$?
c. What is the range of $g(x)$?
d. What is the inverse of $f(x)$?
e. Why doesn't $g(x)$ have an inverse?
f. What is the value of $f g(5)$?

DIFPERENTHITIOCN EPSICOUESNDOMS

1) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for the following curves.
(a) $y=2 x^{2}$
(b) $y=4 x^{3}$
(c) $y=3 x^{5}$
(d) $y=12 x^{10}$
(e) $y=-4 x^{2}$
(f) $y=-3 x^{-1}$
(g) $y=3 x$
(h) $y=4 x$
(i) $y=-5 x$
(j) $y=-4 x^{2}$
(k) $y=-3 x^{-2}$
(l) $y=12 x-1$
(m) $y=3 x+2$
(n) $y=x^{2}+x$
(o) $y=2 x^{2}+4 x^{3}$
(p) $y=2 x^{2}+3 x+4$
(q) $y=5 x^{2}-6 x-2$
(r) $y=1-x^{2}$
(s) $y=2 x-x^{3}+4$
(t) $y=(x-1)(x+1)$
(u) $y=x(x+3)(x-1)$
(v) $y=\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}$
(w) $y=x-3 x^{-2}$
(x) $y=\frac{3}{x^{2}}-\frac{2}{x}+3$
(y) $y=4 x^{2}+(2 x-1)^{2}$
(z) $y=\left(x-\frac{1}{x}\right)^{2}$.
2) Find the stationary points of $y=x^{3}-3 x^{2}-45 x+7$ and describe their nature.

CIEXED EXPMSTMLEGUESTIDNS

1. A geometric progression has 6 terms. The first term is 192 and the common ratio is 1.5 . An arithmetic progression has 21 terms and common difference 1.5 . Given that the sum of all the terms in the geometric progression is equal to the sum of all the terms in the arithmetic progression, find the first term and the last term of the arithmetic progression.
2. (a) Find the sum of all the integers between 100 and 400 that are divisible by 7 .
(b) The first three terms in a geometric progression are 144, x and 64 respectively, where x is positive. Find
(i) the value of x,
(ii) the sum to infinity of the progression.
3. The first term of a geometric progression is 81 and the fourth term is 24 . Find
(i) the common ratio of the progression,
(ii) the sum to infinity of the progression.

The second and third terms of this geometric progression are the first and fourth terms respectively of an arithmetic progression.
(iii) Find the sum of the first ten terms of the arithmetic progression.
4. The 1 st term of an arithmetic progression is a and the common difference is d, where $d \neq 0$.
(i) Write down expressions, in terms of a and d, for the 5th term and the 15 th term.

The 1st term, the 5th term and the 15 th term of the arithmetic progression are the first three terms of a geometric progression.
(ii) Show that $3 a=8 d$.
(iii) Find the common ratio of the geometric progression.
5. Each year a company gives a grant to a charity. The amount given each year increases by 5% of its value in the preceding year. The grant in 2001 was $\$ 5000$. Find
(i) the grant given in 2011,
(ii) the total amount of money given to the charity during the years 2001 to 2011 inclusive.
6. (a) Find the sum to infinity of the geometric progression with first three terms $0.5,0.5^{3}$ and 0.5^{5}.
(b) The first two terms in an arithmetic progression are 5 and 9. The last term in the progression is the only term which is greater than 200 . Find the sum of all the terms in the progression.
7. The first term of an arithmetic progression is 6 and the fifth term is 12 . The progression has n terms and the sum of all the terms is 90 . Find the value of n.
8. (i) Find the first 3 terms in the expansion of $(2-x)^{6}$ in ascending powers of x.
(ii) Find the value of k for which there is no term in x^{2} in the expansion of $(1+k x)(2-x)^{6}$.
9. The first three terms in the expansion of $(2+a x)^{n}$, in ascending powers of x, are $32-40 x+b x^{2}$. Find the values of the constants n, a and b.
10. (i) Find the first 3 terms in the expansion, in ascending powers of x, of $\left(2+x^{2}\right)^{5}$.
(ii) Hence find the coefficient of x^{4} in the expansion of $\left(1+x^{2}\right)^{2}\left(2+x^{2}\right)^{5}$.
11. Find the value of the coefficient of x^{2} in the expansion of $\left(\frac{x}{2}+\frac{2}{x}\right)^{6}$.
12. The function f is defined by $\mathrm{f}: x \mapsto 2 x^{2}-12 x+13$ for $0 \leq x \leq A$, where A is a constant.
(i) Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are constants.
(ii) State the value of A for which the graph of $y=\mathrm{f}(x)$ has a line of symmetry.
(iii) When A has this value, find the range of f.

The function g is defined by $\mathrm{g}: x \mapsto 2 x^{2}-12 x+13$ for $x \geq 4$.
(iv) Explain why g has an inverse.
(v) Obtain an expression, in terms of x, for $\mathrm{g}^{-1}(x)$.
13. The function f is defined by

$$
\mathrm{f}: x \mapsto 3 x-2 \text { for } x \in \mathbb{R}
$$

(i) Sketch, in a single diagram, the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, making clear the relationship between the two graphs.

The function g is defined by

$$
\mathrm{g}: x \mapsto 6 x-x^{2} \text { for } x \in \mathbb{R}
$$

(ii) Express $\operatorname{gf}(x)$ in terms of x, and hence show that the maximum value of $\mathrm{gf}(x)$ is 9 .

The function h is defined by

$$
\mathrm{h}: x \mapsto 6 x-x^{2} \text { for } x \geq 3
$$

(iii) Express $6 x-x^{2}$ in the form $a-(x-b)^{2}$, where a and b are positive constants.
(iv) Express $\mathrm{h}^{-1}(x)$ in terms of x.
14. Functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto 4 x-2 k \text { for } x \in \mathbb{R}, \text { where } k \text { is a constant, } \\
& g: x \mapsto \frac{9}{2-x} \text { for } x \in \mathbb{R}, x \neq 2
\end{aligned}
$$

(i) Find the values of \mathbf{k} for which the equation $\operatorname{fg}(x)=x$ has two equal roots.
(ii) Determine the roots of the equation $\mathrm{fg}(x)=x$ for the values of \mathbf{k} found in part (i).
15. Functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto k-x \quad \text { for } x \in \mathbb{R}, \text { where } \mathrm{k} \text { is a constant, } \\
& \mathrm{g}: x \mapsto \frac{9}{x+2} \text { for } x \in \mathbb{R}, x \neq-2
\end{aligned}
$$

(i) Find the values of k for which the equation $\mathrm{f}(x)=\mathrm{g}(x)$ has two equal roots and solve the equation $\mathrm{f}(x)=\mathrm{g}(x)$ in these cases.
(ii) Solve the equation $\operatorname{fg}(x)=5$ when $k=6$.
(iii) Express $\mathrm{g}^{-1}(x)$ in terms of x.
16. The function f is defined by $\mathrm{f}: x \mapsto x^{2}-3 x$ for $x \in \mathbb{R}$.
(i) Find the set of values of x for which $\mathrm{f}(x)>4$.
(ii) Express $\mathrm{f}(x)$ in the form $(x-a)^{2}-b$, stating the values of a and b.
(iii) Write down the range of f .
(iv) State, with a reason, whether f has an inverse.

The function g is defined by $g: x \mapsto x-3 \sqrt{ } x$ for $x \geq 0$.
(v) Solve the equation $\mathrm{g}(x)=10$.
17. A curve has equation $y=\frac{4}{\sqrt{x}}$.
(i) The normal to the curve at the point $(4,2)$ meets the x-axis at P and the y-axis at Q. Find the length of $P Q$, correct to 3 significant figures.
18. A curve has equation $y=\frac{k}{x}$, Given that the gradient of the curve is -3 when $x=2$, find the value of the constant k.

CIEXED EKRCISTMLE CUESTION SOLDTIOCS

1. $\quad \mathrm{GP} a=192, r=1.5, n=6$
$\mathrm{AP} a=a, d=1.5, n=21$
S_{6} for GP $=192\left(1.5^{6}-1\right) \div 0.5$
$=3990$
Correct sum formula used.
S_{21} for $\mathrm{AP}=\frac{21}{2}(2 \mathrm{a}+20 \times 1.5)$
Correct sum formula used.

Equate and solve $\rightarrow a=175$

Correct formula used.
$21^{\text {st }}$ term in $\mathrm{AP}=\mathrm{a}+20 d=205$
(or from $3990=21(a+l) / 2$
(a) $\quad a=105 \quad$ B1
co
Either $l=399$ or $d=7$
co
$n=43$
co
$\rightarrow 10836$
co
(b) $\quad \mathrm{r}^{2}=64 / 144 \rightarrow r=2 / 3$
award in either part
(i) Either $x=a r \rightarrow x=96$
or $\frac{144}{x}=\frac{x}{64} \rightarrow x=96$
either method ok
(ii) Use of $S_{\infty}=\frac{a}{1-r} \quad$ M1

Used with his a and r

$$
\begin{equation*}
\rightarrow 432 \tag{A15}
\end{equation*}
$$

Co
(nb do not penalise if r and l or x negative as well as positive.)
$\begin{array}{lll}\text { 3. (i) } \quad a=81, a r^{3}=24 \\ \text { Valid method for } r . & \text { M1 }\end{array}$

$$
\begin{equation*}
\rightarrow r^{3}=24 / 81 \rightarrow r=2 / 3 \text { or } 0.667 \tag{A12}
\end{equation*}
$$

(ii) $\mathrm{S}_{\infty}=\frac{a}{1-r}=81 \div 1 / 3=243$

Correct formula. $\sqrt{ }$ for his a and r,
providing $-1<r<1$.
(iii) 2 nd term of $\mathrm{GP}=a r=81 \times 2 / 3=54$

3 rd term of GP $=a r^{2}=36$
Finding the 2nd and 3rd terms of GP.
$\rightarrow 3 d=-18(d=-6)$
M for finding $d+$ correct S_{10} formula. Co
$\rightarrow \mathrm{S}_{10}=5 \times(108-54)=270$
4. (i) $\quad a+4 d$ and $a+14 d$

Both correct.
(ii) $\quad a+4 d=\mathrm{ar}, a+14 d=\mathrm{ar}{ }^{2}$

Correct first step - awards the mark for both of these starts.
(iii) $\quad \mathrm{r}=\frac{a+4 d}{a}$ or $\frac{a+14 d}{a+4 d}=2.5$

Statement + some substitution. Co
5. (i) $\quad \mathrm{r}=1.05$ with GP

2011 is 11 years.
Anywhere in the question. This could
be marked as $2+3$

Uses $a r^{\mathrm{n}-1}$
Allow if correct formula with $n=10$
$\rightarrow \$ 8144$ (or 8140)
co. (allow 3sf)
(ii) Use of S_{n} formula

Allow if used correctly with 10 or 11.
$\rightarrow \$ 71034$
co (or 71000)
$\begin{array}{lll}\text { 6. (a) } \quad \begin{array}{l}a=0.5, r=0.5^{2} \\ \text { For both } a \text { and } r .\end{array} & \text { B1 }\end{array}$

Uses correct formula $=0.5 \div 0.75$
Uses correct formula with some a, r.
$\rightarrow S_{\infty}=2 / 3 \quad($ or 0.667$)$
(b) $\quad a=5, d=4$

Uses $200=a+(n-1) d$ or T.I.
Attempt at finding the number of terms.

50 terms in the progression
co.

Use of correct Sum formula
Correct formula (could use the last term (201))
$\rightarrow 5150$
7. $1^{\text {st }}$ term $=a=6$
$5^{\text {th }}$ term $=a+4 d=12$
$\rightarrow d=1.5$
Correct value of d
$S_{n}=\frac{n}{2}(12+(n-1) 1.5)=90$
Use of correct formula with his d
$\rightarrow n^{2}+7 n-120=0$
Correct method for soln of quadratic
$\rightarrow n=8$
Co (ignore inclusion of $n=-15$)
8. (i) $(2-x)^{6}=64-192 x+240 x^{2}$

One for each term. Allow 2^{6}.
(ii) $\quad(1+k x)(2-x)^{6}$
coeff of $x^{2}=240-192 k$
Must be considering sum of 2 terms
ft for this expansion.
$=0 \rightarrow k=5 / 4$ or 1.25
(allow M1 if looking for coeff of x).
9. $(2+a x)^{\mathrm{n}}$
$1^{\text {st }}$ term $=2^{\text {n }}=32 \rightarrow n=5$
co
$2^{\text {nd }}$ term $=n .2^{\mathrm{n}-1}(a x)=-40 x$
Allow for both binomial coefficients
$3^{\text {rd }}$ term $=n(n-1) .1 / 2.2^{\mathrm{n}-2} .(a x)^{2}$
Allow for one power of 2 and $a x$

$$
\begin{equation*}
\rightarrow a=-1 / 2 \tag{A1}
\end{equation*}
$$

co

$$
\begin{equation*}
\rightarrow b=20 \tag{A1}
\end{equation*}
$$

10. (i) $\left(2+x^{2}\right)^{5}=2^{5}+5.2^{4} \cdot x^{2}+10.2^{3} \cdot x^{4}$
$\rightarrow 32+80 x^{2}+80 x^{4}$
If coeffs ok but x and x^{2}, allow B1 special
case. Allow 80, 80 if in (ii).
(allow 2^{5} for 32)
(ii) $\left(1+x^{2}\right)^{2}=1+2 x^{2}+x^{4}$

Anywhere.

Product has 3 terms in x^{4}
Must be attempt at more than 1 term
$\rightarrow 80+160+32=272$
For follow-through on both expansions,
providing there are 3 terms added.
11. $\left(\frac{x}{2}+\frac{2}{x}\right)^{6}$

Term in $x^{2}\left(\frac{x}{2}\right)^{4}\left(\frac{2}{x}\right)^{2} \times 15$
Correct term - needs powers 4 and 2

For $\times 15$

Coeff $=\frac{15}{4}$ or 3.75
Ignore inclusion of x^{2}
12. (i) $2 x^{2}-12 x+13=2(x-3)^{2}-5$

Allow even if a, b, c not specifically quoted
(ii) Symmetrical about $x=3 . A=6$.

For $2 \times$ his $(-b)$.
(iii) One limit is -5

B1 $\sqrt{ }$
For his c.

Other limit is 13
co.
(iv) Inverse since $1: 1(4>3)$.

Valid argument
(v) Makes x the subject of the equation

Attempts to change the formula

Order of operations correct
" +5 ", $\div 2, \sqrt{ },+3$. Allow for simple algebraic slips such as -5 for +5 etc.
$\rightarrow \sqrt{\frac{x+5}{2}}+3$
co - as a function of x, not y.
condone \pm.
13. $\mathrm{f}: x \rightarrow 3 x-2$
(i)

Graph of $y=3 x-2$

Evidence of mirror image in $y=x$ or graph of $1 / 3(x+2)$. Whichever way, there must be symmetry shown or quoted or implied by same intercepts.
(ii) $\operatorname{gf}(x)=6(3 x-2)-(3 x-2)^{2}$

Must be gf, not fg
$=-9 x^{2}+30 x-16$
$\mathrm{d} / \mathrm{d} x=-18 x+30$
Differentiates or completes square
$=0$ when $x=5 / 3$ DM1
Sets to 0 , solves and attempts to find y
\rightarrow Max of 9
All ok - answer was given
$\left(\mathrm{gf}(x)=9-(3 x-5)^{2} \rightarrow \operatorname{Max} 9\right)$
(iii) $6 x-x^{2}=9-(x-3)^{2}$

Does not need a or b.
(iv) $y=9-(3-x)^{2}$

Order of operations in making x subject
$3-x= \pm \sqrt{9-y}$
Interchanging x and y
$\rightarrow \mathrm{h}^{-1}(x)=3+\sqrt{ }(9-x)$
Allow if \pm given
(Special case \rightarrow if correct with y instead of x, give 2 out of 3)
14.
$\mathrm{f}: x \rightarrow 4 x-2 k, \mathrm{~g}: x \mapsto \frac{9}{2-x}$
(i) $\quad \operatorname{fg}(x)=\frac{36}{2-x}-2 k=x$

Knowing to put g into f (not gf)
$x^{2}+2 k x-2 x+36-4 k$
Correct quadratic.
$(2 k-2)^{2}=4(36-4 k)$
Any use of $b^{2}-4 a c$ on quadratic $=0$
$k=5$ or -7
Both correct.
(ii) $\quad x^{2}+8 x+16=0, x^{2}-16 x+64=0$

Substituting one of the values of k.
$x=-4$ or $x=8$.
15. $f: x \mapsto k-x$
$\mathbf{g}: x \mapsto \frac{9}{x+2}$
(i) $\quad k-x=\mapsto \frac{9}{x+2}$
$\rightarrow x^{2}+(2-k) x+9-2 k=0$
Forming a quadratic equation

Use of $b^{2}-4 a c$
Use of $b^{2}-4 a c$ on quadratic $=0$
$\rightarrow a=4$ or -8
DM1 for solution. A1 both correct.
$k=4$, roots is $\frac{-b}{2 a}=1$
Any valid method.
$k=-8$, root is -5 .
Both correct.
(ii) $\quad \operatorname{fg}(x)=6-\frac{9}{x+2}$

Must be fg, not for gf

Equates and solves with 5
Reasonable algebra
$x=7$
co.
[or $\mathrm{fg}(x)=5 \rightarrow \mathrm{~g}(x)=1 \rightarrow x=7$]
$[\mathrm{g}(x)=1 \mathrm{M} 1 \rightarrow x \mathrm{DM} 1 x=7 \mathrm{~A} 1]$
(iii) $y=\frac{9}{x+2} \rightarrow x=\frac{9}{y}-2$

Virtually correct algebra, Allow + for - .
$\mathrm{g}^{-1}(x)=\frac{9}{x}-2$ or $\frac{9-2 x}{x}$
Correct and in terms of x.

Solving Quadratric $=0$. Correct values.
$\rightarrow x<-1$ and $x>4$
co. - allow \leq and /or $\geq, 4<x<-1$ ok
(ii) $\quad x^{2}-3 x=\left(x-\frac{3}{2}\right)^{2}+-\frac{9}{4}$

B1 for $\frac{3}{2}$. B1 for $\frac{9}{4}$.
(iii) $\mathrm{f}(x)$ (or $y) \geq-\frac{9}{4}$
$\sqrt{ }$ for $\mathrm{f}(x) \geq "-b "$.
(iv) No inverse - not 1:1

Independent of previous working.
(v) Quadratic in $\sqrt{ } x$

Recognition of "Quadratic in $\sqrt{ }$ "

Solutions $\rightarrow \sqrt{x}=5$ or -2
Method of solution.
$\rightarrow x=25$
co. Loses this mark if other answers given. Nb ans only full marks.
17. $y=\frac{4}{\sqrt{x}}$
(i) $\mathrm{d} y / \mathrm{d} x=-2 x^{-1.5}$

M1
Reasonable attempt at differentiation with his power of x.

$$
=-1 / 4
$$

CAO
m of normal $=4$
Use of $m_{1} m_{2}=-1$ even if algebraic.

Eqn of normal $y-2=4(x-4)$
$P(3.5,0)$ and $\mathrm{Q}(0,-14)$
Use of equation for a straight line + use of $x=0$ and $y=0$.

Length of $P Q=\sqrt{ }\left(3.5^{2}+14^{2}\right)$
Needs correct formula or method.

$$
=14.4
$$

CAO
(ii) Area $=\int_{1}^{4} x^{0.5} \mathrm{~d} x=\left[\frac{4 x^{0.5}}{0.5}\right]$

Attempt at integration. Correct
unsimplified.

$$
=\left[\begin{array}{ll}
8 & \sqrt{x}
\end{array}\right]=16-8=8
$$

Correct use of limits. CAO
18. $\frac{\mathrm{d} y}{\mathrm{~d} x}=-k x^{-2}$

Negative power ok.
Puts $x=2, m=-3$
Subs $x=2$ into his $\mathrm{d} y / \mathrm{d} x$.
$\rightarrow k=12$

