

TRUC PAST PAPER CUESTIONS

1. (i) Show that the equation $\sin \theta+\cos \theta=2(\sin \theta-\cos \theta)$ can be expressed as $\tan \theta=3$.
(ii) Hence solve the equation $\sin \theta+\cos \theta=2(\sin \theta-\cos \theta)$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.
2. A function f is defined by $\mathrm{f}: x \mapsto 3-2 \sin x$, for $0^{\circ} \leq x \leq 360^{\circ}$.
(i) Find the range of f .
(ii) Sketch the graph of $y=\mathrm{f}(x)$.

A function g is defined by $\mathrm{g}: x \mapsto 3-2 \sin x$, for $0^{\circ} \leq x \leq A^{\circ}$, where A is a constant.
(iii) State the largest value of A for which g has an inverse.
(iv) When A has this value, obtain an expression, in terms of x, for $\mathrm{g}^{-1}(x)$.
3. Solve the equation $3 \sin ^{2} \theta-2 \cos \theta-3=0$, for $0^{\circ} \leq \theta \leq 180^{\circ}$.
4. Solve the equation

$$
\sin 2 x+3 \cos 2 x=0
$$

for $0^{\circ} \leq x \leq 180^{\circ}$.
5. Given that $x=\sin ^{-1}\left(\frac{2}{5}\right)$ find the exact value of
(i) $\cos ^{2} x$,
(ii) $\tan ^{2} x$.
6. Prove the identity $\frac{1-\tan ^{2} x}{1+\tan ^{2} x} \equiv 1-2 \sin ^{2} x$.
7. How much wood would a wood chuck chuck if a wood chuck could chuck wood?
8. (i) Show that the equation $3 \sin x \tan x=8$ can be written as $3 \cos ^{2} x+8 \cos x-3=0$.
(ii) Hence solve the equation $3 \sin x \tan x=8$ for $0^{\circ} \leq x \leq 360^{\circ}$.
9. Prove the identity $\frac{\sin x}{1-\sin x}-\frac{\sin x}{1+\sin x} \equiv 2 \tan ^{2} x$.

1. (i) $\mathrm{s}+\mathrm{c}=2 \mathrm{~s}-2 \mathrm{c} \rightarrow \mathrm{s}=3 \mathrm{c}$ Use of $\mathrm{t}=\mathrm{s} / \mathrm{c}+$ collection $\rightarrow \tan \theta=k$.

$$
\rightarrow \tan \theta=3
$$

Algebra needed to reduce to this form.
(ii) $\rightarrow \theta=71.6^{\circ}$ or 251.6°
$\mathrm{B} 1 \sqrt{ }$ for $180+\ldots$ as only soln in range.
2. $\mathrm{f}: x \rightarrow 3-2 \sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$.
(i) Range $1 \leq \mathrm{f}(x) \leq 5$

Needs $1,5, \leq$. One off for each error.
(ii)

$\mathrm{g}: x \rightarrow 3-2 \sin x$ for $0^{\circ} \leq x \leq A^{0}$
B2,1,0 2
Must be exactly 1 full oscillation - this overrides the rest.
Starts and ends at 3.
Correct shape needed.
Curves, not blatant lines.
(iii) Maximum value of $A=90$ or $1 / 2 \pi$

CAO
(iv) $y=3-2 \sin x$

Attempt to make x the subject and then to replace x by y. Needs $\sin ^{-1}()$.
$\mathrm{g}^{-1}(x)=\sin ^{-1}\left(\frac{3-x}{2}\right)$
Everything correct inc $\sin ^{-1}$.
Allow these marks anywhere.
3. $3 \sin ^{2} \theta-2 \cos \theta-3=0$

Use of $s^{2}+c^{2}=1$
Use of $s^{2}+c^{2}=1$ to eliminate sine.
$3 \cos ^{2} \theta+2 \cos \theta=0$
Correct equation
$\cos \theta=0, \theta=90^{\circ}$
Co.
or $\cos \theta=-2 / 3, \theta=131.8^{\circ}$
Co. (to $1 \mathrm{~d} . \mathrm{p}$ or more - there must be only this answer in the range 0 to 180))
4. $\tan 2 x=-3$

Use of $\tan =\sin / \cos$ with " $2 x$ "
$2 x=180-71.6$
or $2 x=360-71.6$
" $2 x$ " in second quadrant.
$\rightarrow x=54.2^{\circ}$ or 144.2°
co. For $90+1^{\text {st }}$ answer.
5. $x=\sin ^{-1} \frac{2}{5} \rightarrow \sin x=\frac{2}{5}$
(i) $\cos ^{2} x=1-\sin ^{2} x=\frac{21}{25}$

M1 A12
Formula only-use of 90° triangle ok co - loses if decimals blatantly used
(ii) $\tan ^{2} x=\frac{\sin ^{2} x}{\cos ^{2} x}=\frac{4}{21}$

M1 A12
Formual only - or use of triangle ok Correct from his answer to(i).
6. Use of $t=s / c$
tan completely removed
$\rightarrow\left(c^{2}-s^{2}\right) \div\left(c^{2}+s^{2}\right)$
A1
May omit the denominator (=1)
Use of $c^{2}+s^{2}=1$
Whenever used appropriately
$\rightarrow\left(c^{2}-s^{2}\right) \rightarrow 1-2 \sin ^{2} x$
ag Beware fortuitous answers
7. A wood chuck would chuck all the wood he could chuck if a wood chuck could chuck wood.
8. (i) $3 \sin x \tan x=8$

Uses $\tan =\sin \theta+$ cosine
Replaces t by s / c
Uses $\sin ^{2}=1-\cos ^{2}$
Uses $\sin ^{2}=1-\cos ^{2}$ for eqn in cosine.
$\rightarrow 3 \cos ^{2} x+8 \cos -3=0$
Answer given.
(ii) $(3 c-1)(c+3)=0$ or formula
$\cos x=1 / 3$ as only solution.
Correct means of solution of quad.
$x=70.5^{\circ}$ or 289.5° only.
co. For $360^{\circ}-1^{\text {st }}$ ans + no other in range.
9. $\frac{s}{1-s}-\frac{s}{1+s}=\frac{2 s^{2}}{1-s^{2}}$

Correct algebra
Use of $1-s^{2}=c^{2}$
Use of this formula.

$$
\rightarrow \frac{2 s^{2}}{c^{2}}
$$

$\rightarrow 2 t^{2}$
Evidence of $\tan =\sin / \cos$ and everything completed accurately.

