

TRIG PAST PAPER QUESTIONS

(ii) Hence solve the equation $\sin\theta + \cos\theta = 2(\sin\theta - \cos\theta)$, for $0^\circ \le \theta \le 360^\circ$.

[2]

- 2. A function f is defined by $f: x \mapsto 3-2 \sin x$, for $0^\circ \le x \le 360^\circ$.
 - (i) Find the range of f. [2]
 - (ii) Sketch the graph of y = f(x). [2]

A function g is defined by $g: x \mapsto 3-2 \sin x$, for $0^\circ \le x \le A^\circ$, where A is a constant.

(iii) State the largest value of A for which g has an inverse. [1]

(iv) When *A* has this value, obtain an expression, in terms of *x*, for $g^{-1}(x)$.

[2]

3. Solve the equation $3\sin^2\theta - 2\cos\theta - 3 = 0$, for $0^\circ \le \theta \le 180^\circ$.

4. Solve the equation

 $\sin 2x + 3\cos 2x = 0,$

for $0^{\circ} \le x \le 180^{\circ}$.

[4]

- 5. Given that $x = \sin^{-1}\left(\frac{2}{5}\right)$ find the exact value of (i) $\cos^2 x$,
 - (ii) $\tan^2 x$.

6. Prove the identity
$$\frac{1-\tan^2 x}{1+\tan^2 x} \equiv 1-2\sin^2 x$$
.

[4]

[2]

[2]

7. How much wood would a wood chuck chuck if a wood chuck could chuck wood?

8. (i) Show that the equation $3 \sin x \tan x = 8$ can be written as $3 \cos^2 x + 8 \cos x - 3 = 0$.

[3]

(ii) Hence solve the equation $3 \sin x \tan x = 8$ for $0^\circ \le x \le 360^\circ$.

[3]

9. Prove the identity $\frac{\sin x}{1-\sin x} - \frac{\sin x}{1+\sin x} = 2\tan^2 x$.

[3]

 $B1\sqrt{1000}$ for 180 + ... as only soln in range.

1.

2.

- $f: x \rightarrow 3 2\sin x$ for $0^{\circ} \le x \le 360^{\circ}$.
- (i) Range $1 \le f(x) \le 5$ Needs 1, 5, \le . One off for each error.

(ii)

g: $x \rightarrow 3 - 2\sin x$ for $0^{\circ} \le x \le A^{\circ}$

Must be exactly 1 full oscillation – this overrides the rest. Starts and ends at 3. Correct shape needed. Curves, not blatant lines.

- (iii) Maximum value of A = 90 or $\frac{1}{2}\pi$ CAO
- (iv) $y = 3 2 \sin x$ Attempt to make x the subject and then to replace x by y. Needs \sin^{-1} ().

$$g^{-1}(x) = \sin^{-1}\left(\frac{3-x}{2}\right)$$
 A12

Everything correct inc \sin^{-1} . Allow these marks anywhere. B2,1,02

B2,1,0

2

B11

M1

[7]

3.	$3\sin^2\theta - 2\cos\theta - 3 = 0$		
	Use of $s^2 + c^2 = 1$	M1	
	Use of $s^2 + c^2 = 1$ to eliminate sine.		
	$3\cos^2\theta + 2\cos\theta = 0$	A1	
	Correct equation		
	$\cos \theta = 0, \theta = 90^{\circ}$	B1	
	Co.		
	or $\cos \theta = -2/3$, $\theta = 131.8^{\circ}$	A1	
	Co. (to 1 d.p or more – there must be		
	only this answer in the range 0 to 180))	ГЛ.	1
		L++.	

4.	$\tan 2x = -3$ Use of $\tan = \frac{\sin}{\cos with} \frac{2x''}{2x''}$	M1
	2x = 180 - 71.6 or $2x = 360 - 71.6$ " $2x$ " in second quadrant.	DM1
	$\rightarrow x = 54.2^{\circ} \text{ or } 144.2^{\circ}$	A1 A1√

$$\rightarrow x = 54.2^{\circ} \text{ or } 144.2^{\circ}$$
co. For 90 + 1st answer.

5.
$$x = \sin^{-1} \frac{2}{5} \to \sin x = \frac{2}{5}$$

(i)
$$\cos^2 x = 1 - \sin^2 x = \frac{21}{25}$$

Formula only-use of 90° triangle ok
co - loses if decimals blatantly used
(ii) $\tan^2 x = \frac{\sin^2 x}{\cos^2 x} = \frac{4}{21}$
M1 A12

6.	Use of $t = s/c$ tan completely removed	M1
	$\rightarrow (c^2 - s^2) \div (c^2 + s^2)$ May omit the denominator (= 1)	A1
	Use of $c^2 + s^2 = 1$ Whenever used appropriately	M1
	$\rightarrow (c^2 - s^2) \rightarrow 1 - 2\sin^2 x$ ag Beware fortuitous answers	A1

7. A wood chuck would chuck all the wood he could chuck if a wood chuck could chuck wood.

8.	(i)	$3\sin x \tan x = 8$ Uses $\tan = \sin \theta + \cos \theta$ Replaces t by s/c	M1
		Uses $\sin^2 = 1 - \cos^2$ Uses $\sin^2 = 1 - \cos^2$ for eqn in cosine.	M1
		$\rightarrow 3\cos^2 x + 8\cos - 3 = 0$ Answer given.	A13
	(ii)	(3c-1)(c+3) = 0 or formula $\cos x = \frac{1}{3}$ as only solution. Correct means of solution of quad.	M1
		$x = 70.5^{\circ}$ or 289.5° only. co. For $360^{\circ} - 1^{st}$ ans + no other in range.	A1 A1√3

9.	$\frac{s}{1-s} - \frac{s}{1+s} = \frac{2s^2}{1-s^2}$	B1
	Correct algebra	

Use of $1 - s^2 = c^2$ M1 Use of this formula.

$$\rightarrow \frac{2s^2}{c^2}$$

$$\rightarrow 2t^2$$
Evidence of tan = sin/cos and everything A1

Evidence of tan = sin/cos and everything completed accurately.

[6]