PI VECTOR PAST PAPER CUESTIONS

1. Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \text { and } \overrightarrow{O B}=4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}
$$

(i) Use a scalar product to find angle $A O B$, correct to the nearest degree.
(ii) Find the unit vector in the direction of $\overrightarrow{A B}$.
(iii) The point C is such that $\overrightarrow{O C}=6 \mathbf{j}+p \mathbf{k}$, where p is a constant. Given that the lengths of $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are equal, find the possible values of p.
2. Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=2 \mathbf{i}-8 \mathbf{j}+4 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=7 \mathbf{i}+2 \mathbf{j}-\mathbf{k}
$$

(i) Find the value of $\overrightarrow{O A}, ~ \overrightarrow{O B}$ and hence state whether angle $A O B$ is acute, obtuse or a right angle.
(ii) The point X is such that $\overrightarrow{A X}=\frac{2}{5} \overrightarrow{A B}$. Find the unit vector in the direction of $O X$.
3. Relative to an origin O, the position vectors of points P and Q are given by

$$
\overrightarrow{O P}=\left(\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right) \quad \text { and } \quad \overrightarrow{O Q}=\left(\begin{array}{l}
2 \\
1 \\
q
\end{array}\right),
$$

where q is a constant.
(i) In the case where $q=3$, use a scalar product to show that $\cos P O Q=\frac{1}{7}$.
(ii) Find the values of q for which the length of $\overrightarrow{P Q}$ is 6 units.
4.

The diagram shows the roof of a house. The base of the roof, $O A B C$, is rectangular and horizontal with $O A=C B=14 \mathrm{~m}$ and $O C=A B=8 \mathrm{~m}$. The top of the roof $D E$ is 5 m above the base and $D E$ $=6 \mathrm{~m}$. The sloping edges $O D, C D, A E$ and $B E$ are all equal in length.

Unit vectors \mathbf{i} and \mathbf{j} are parallel to $O A$ and $O C$ respectively and the unit vector \mathbf{k} is vertically upwards.
(i) Express the vector $\overrightarrow{O D}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}, and find its magnitude.
(ii) Use a scalar product to find angle $D O B$.
5. The position vectors of points A and B are $\left(\begin{array}{c}-3 \\ 6 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right)$ respectively, relative to an origin O.
(i) Calculate angle $A O B$.
(ii) The point C is such that $\overrightarrow{A C}=3 \overrightarrow{A B}$. Find the unit vector in the direction of $\overrightarrow{O C}$.
6. Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=\left(\begin{array}{c}
4 \\
1 \\
-2
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{l}
3 \\
2 \\
-4
\end{array}\right)
$$

(i) Given that C is the point such that $\overrightarrow{A C}=2 \overrightarrow{A B}$, find the unit vector in the direction of $\overrightarrow{O C}$.

The position vector of the point D is given by $\overrightarrow{O D}=\left(\begin{array}{l}1 \\ 4 \\ k\end{array}\right)$, where k is a constant, and it is given that $\overrightarrow{O D}=m \overrightarrow{O A}+n \overrightarrow{O B}$, where m and n are constants.
(ii) Find the values of m, n and k.
 vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to and respectively. The mid-points of $O A$ and $D G$ are P and Q respectively and R is the centre of the square face $A B F E$.
(i) Express each of the vectors $\overrightarrow{P R}$ and $\overrightarrow{P Q}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to find angle $Q P R$.
(iii) Find the perimeter of triangle $P Q R$, giving your answer correct to 1 decimal place.
8. Relative to an origin O, the position vectors of points A and B are $2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $3 \mathbf{i}-2 \mathbf{j}+p \mathbf{k}$ respectively.
(i) Find the value of p for which $O A$ and $O B$ are perpendicular.
(ii) In the case where $p=6$, use a scalar product to find angle $A O B$, correct to the nearest degree.
(iii) Express the vector $A B$ is terms of p and hence find the values of p for which the length of $A B$ is 3.5 units.
9.

The diagram shows a semicircular prism with a horizontal rectangular base $A B C D$. The vertical ends $A E D$ and $B F C$ are semicircles of radius 6 cm . The length of the prism is 20 cm . The mid-point of $A D$ is the origin O, the mid-point of $B C$ is M and the mid-point of $D C$ is N. The points E and F are the highest points of the semicircular ends of the prism. The point P lies on $E F$ such that $E P=8 \mathrm{~cm}$.

Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $O D, O M$ and $O E$ respectively.
(i) Express each of the vectors $\overrightarrow{P A}$ and $\overrightarrow{P N}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to calculate angle $A P N$.

1. $\overrightarrow{O A}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \overrightarrow{O B}=4 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$
(i) $\overrightarrow{O A} \cdot \overrightarrow{O B}=8-9-2=-3$

Correct use of $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$
$\overrightarrow{O A} . \overrightarrow{O B}=\sqrt{ } 14 \times \sqrt{ } 29 \cos A O B$
M1 M1
Modulus. Correct use of $a b \cos \theta$
$\overrightarrow{\mathrm{CAO}} A O B=99^{\circ}$
A14
CAO
(ii) $\overrightarrow{A B}=\mathbf{b}-\mathbf{a}=2 \mathbf{i}-6 \mathbf{j}+3 \mathbf{k}$

B1

Magnitude of $\overrightarrow{A B}=\sqrt{ } 49=7$
Use of Pythagoras + division.
\rightarrow Unit vector $=\frac{1}{7}(2 \mathbf{i}-6 \mathbf{j}+3 \mathbf{k})$
CAO (use of $\overrightarrow{B A}$ for $\overrightarrow{A B}$ has max 2/3).
(iii) $\overrightarrow{A C}=-2 \mathbf{i}+3 \mathbf{j}+(p+1) \mathbf{k}$

B1
CAO - condone $\mathbf{a}-\mathbf{c}$ here.
$4+9+(p+1)^{2}=49$
M1 A1V
Correct method for forming an equation

$$
\begin{aligned}
& \rightarrow p=5 \text { or }-7 \\
& \text { CAO }
\end{aligned} \quad \text { A14 }
$$

2. (i) $\mathrm{OA} . \mathrm{OB}=14-16-4=-6$

Must be scalar from correct method.
This is $-\mathrm{ve} \rightarrow$ Obtuse angle.
co. Correct deduction from his scalar.
(ii) $\mathbf{A B}=5 \mathbf{i}+10 \mathbf{j}-5 \mathbf{k}$
$A X=\frac{2}{5}(A B)$
$\mathbf{O X}=\mathbf{O A}+\mathbf{A X}$
Needs $\mathbf{A B}$ and $\mathbf{O X}$ attempting.
$\mathbf{O X}=4 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$
co

Divides by the modulus
Must finish with a vector, not a scalar.

Unit vector $=\frac{1}{6}(4 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})$
Correct for his OX.
3. $\overrightarrow{O P}=\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right)$ and $\overrightarrow{O Q}=\left(\begin{array}{c}2 \\ 1 \\ q\end{array}\right)$
(i) $\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ q\end{array}\right)$ with $q=3,=-4+3+3=2$

Use of $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$.
$=\sqrt{ } 14 . \sqrt{ } 14 \cos \theta=2, \cos \theta=\frac{1}{7}$
Dot product linked with moduli and cos.
co
(ii) $\overrightarrow{P Q}=\mathbf{q}-\mathbf{p}=\left(\begin{array}{c}4 \\ -2 \\ q-1\end{array}\right)$

Allow for $\mathbf{p}-\mathbf{q}$ or $\mathbf{q}-\mathbf{p}$

$$
16+4+(q-1)^{2}=36
$$

Use of modulus and Pythagoras
$\rightarrow q=5$ or $q=-3$
Co (for both)
4. (i) Vector $\mathbf{O D}=4 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$

B2, 1
One off for each error. Column vectors ok

Magnitude $=\sqrt{ } 4^{2}+4^{2}+5^{2}=\sqrt{ } 57$
Correct use of Pythagoras.
\rightarrow Magnitude $=7.55 \mathrm{~m}$
Accept $\sqrt{ } 57$.
(ii) Vector $\mathbf{O B}=14 \mathbf{i}+8 \mathbf{j}$
co
OD.OB $=4 \times 14+4 \times 8=88$
Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ for his vectors \quad M1
$\underset{\text { OD.OB }=\sqrt{ } 57 . ~ \sqrt{2} 20 \cos \theta}{\text { M1 }}$
Used correctly
\rightarrow Angle $D O B=43.7^{\circ} \quad$ A14
co
5. $\mathbf{a}=\left(\begin{array}{r}-3 \\ 6 \\ 3\end{array}\right) \mathbf{b}=\left(\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right)$.

Ok to work throughout with column vectors or with i.j.k
(i) $\mathbf{a}, \mathbf{b}=3+12+12=27$

Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\mathbf{a . b}=\sqrt{ } 54 \times \sqrt{ } 21 \cos \theta$
M1
Use of $\sqrt{ } \sqrt{ } \cos \theta$
$\rightarrow \theta=36.7^{\circ}$ or 0.641 radians
In either degrees or in radians.
(ii) Vector $A B=\mathbf{b}-\boldsymbol{\alpha}=\left(\begin{array}{r}2 \\ -4 \\ 1\end{array}\right)$

For use of $\mathbf{b}-\mathbf{a}$.
Vector $O C=\left(\begin{array}{r}-3 \\ 6 \\ 3\end{array}\right)+3\left(\begin{array}{r}2 \\ -4 \\ 1\end{array}\right)=\left(\begin{array}{r}3 \\ -6 \\ 6\end{array}\right)$
For $\mathbf{a}+3(\mathbf{b}-\mathbf{a})$ or equivalent
Unit vector $=$ Vector $O C+9$.
For division by Modulus of $O C$.
$=1 / 2 \mathbf{i}-2 / 3 \mathbf{j}+2 / 3 \mathbf{k}$
Co.
6. (i) $\overrightarrow{A B}=\left(\begin{array}{r}-1 \\ 1 \\ -2\end{array}\right)$ and $\overrightarrow{A C}=\left(\begin{array}{r}-2 \\ 2 \\ -4\end{array}\right)$

For $\pm(\mathbf{b}-\mathbf{a})(\operatorname{not} \mathbf{b}+\mathbf{a})$
$\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C}=\left(\begin{array}{r}2 \\ 3 \\ -6\end{array}\right)$
Co
Unit vector $=\frac{1}{7}\left(\begin{array}{r}2 \\ 3 \\ -6\end{array}\right)$
Division by the modulus
$\sqrt{ }$ for his $\overrightarrow{O C}$
(ii) $m\left(\begin{array}{r}4 \\ 1 \\ -2\end{array}\right)+n\left(\begin{array}{r}3 \\ 2 \\ -4\end{array}\right)=\left(\begin{array}{l}1 \\ 4 \\ k\end{array}\right)$
$\rightarrow 4 m+3 n=1$ and $m+2 n=4$
Forming 2 simultaneous equations
$\rightarrow m=-2$ and $n=3$
co

$$
\rightarrow k=-8
$$

M1A1 4
Equation for k in terms of m and n. co
7. (i) $\overrightarrow{P R}=\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right) \overrightarrow{P Q}=\left(\begin{array}{r}-2 \\ 2 \\ 4\end{array}\right)$

All elements of ${ }^{P R}-$ any notation ok.

Loses one mark for each error in $\overrightarrow{P Q}$
(ii) $\overrightarrow{P Q} \cdot \overrightarrow{P R}=-4+4+8=8$

Must be scalar

$$
\begin{equation*}
|\overrightarrow{P Q}|=\sqrt{ } 24|\overrightarrow{P R}|=\sqrt{ } 12 \tag{M1}
\end{equation*}
$$

As long as this is used with dot product

$$
\overrightarrow{P Q} \quad \overrightarrow{P R}=\sqrt{ } 12 \sqrt{ } 24 \cos Q P R
$$

Everything linked
($\overrightarrow{Q P} . \overrightarrow{P R}$ used - still gains all M marks)
Angle $Q P R=61.9^{\circ}$ or 1.08 rad
Co
(iii) $\quad \overrightarrow{Q R}=\left(\begin{array}{r}4 \\ 0 \\ -2\end{array}\right)|\overrightarrow{Q R}|=\sqrt{ } 20$

For correct $\overrightarrow{Q R}$ - cosine rule ok.
Perimeter $=\sqrt{ } 12+\sqrt{ } 24+\sqrt{ } 20=12.8 \mathrm{~cm}$
Adds three roots. Co - beware
fortuitous answers from incorrect sign in vectors.
8.
$\mathbf{O A}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}, \mathbf{O B}=3 \mathbf{i}-2 \mathbf{j}+p \mathbf{k}$
(i) $\quad(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(3 \mathbf{i}-2 \mathbf{j}+p \mathbf{k})=0$

For $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ (in (i) or (ii))
$\rightarrow 6-2+2 p=0$
$\rightarrow p=-2$
co
(ii) $(2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(3 \mathbf{i}-2 \mathbf{j}+6 \mathbf{k})$
nb Part (ii) gains 4 marks if (i) missing.
$\rightarrow 6-2+12$ allow for \pm this
A1
co (M1 here if (i) not done)
$=\sqrt{9} \times \sqrt{49} \cos \theta$
All connected correctly
$\rightarrow \theta=40^{\circ}$
co
(iii) $\quad \mathbf{A B}=\mathbf{i}-3 \mathbf{j}+(p-2) \mathbf{k}$

Must be for AB, not BA.
$1^{2}+3^{2}+(p-2)^{2}=3.5^{2}$
Pythagoras (allow if $\sqrt{ }$ wrong once)

DM1

Method of solution.
$\rightarrow p=0.5$ or 3.5
co
(use of BA can score the last 3 marks)
9. (i) $\overrightarrow{P A}=-6 \mathbf{i}-8 \mathbf{j}-6 \mathbf{k}$

Co - column vectors ok

$$
\overrightarrow{P N}=6 \mathbf{i}+2 \mathbf{j}-6 \mathbf{k}
$$

One off for each error
(all incorrect sign - just one error)
(ii) $\overrightarrow{P A} \cdot \overrightarrow{P N}=-36-16+36=-16$

Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\cos A P N=\frac{-16}{\sqrt{136} \sqrt{76}}$
Modulus worked correctly for either one

Division of " -16 " by "product of moduli"
$\rightarrow A P N=99^{\circ}$
A14
Allow more accuracy

