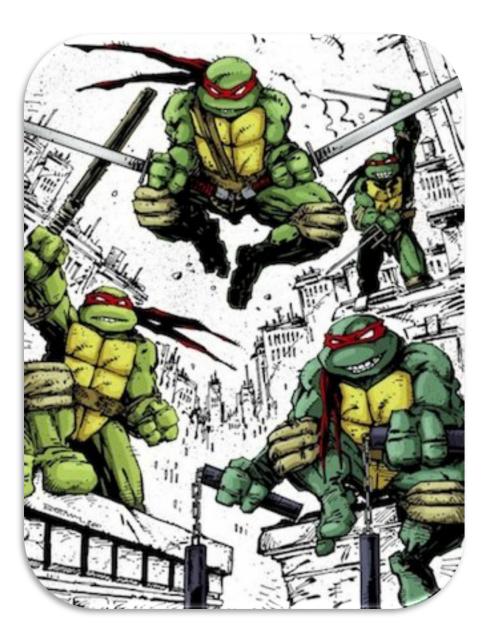
## **PAST PAPER GUESTICAS**



1. Relative to an origin *O*, the position vectors of the points *A* and *B* are given by

$$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$$
 and  $\overrightarrow{OB} = 4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ .

- (i) Use a scalar product to find angle *AOB*, correct to the nearest degree.
- (ii) Find the unit vector in the direction of  $\overrightarrow{AB}$ .
- (iii) The point *C* is such that  $\overrightarrow{OC} = 6\mathbf{j} + p\mathbf{k}$ , where *p* is a constant. Given that the lengths of  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$  are equal, find the possible values of *p*.

[4]

[4]

[3]

2. Relative to an origin *O*, the position vectors of the points *A* and *B* are given by

$$\overrightarrow{OA} = 2\mathbf{i} - 8\mathbf{j} + 4\mathbf{k}$$
 and  $\overrightarrow{OB} = 7\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ .

(i) Find the value of  $\overrightarrow{OA}$ .  $\overrightarrow{OB}$  and hence state whether angle *AOB* is acute, obtuse or a right angle.

(ii) The point X is such that 
$$\overrightarrow{AX} = \frac{2}{5} \overrightarrow{AB}$$
. Find the unit vector in the direction of OX.

[3]

3. Relative to an origin O, the position vectors of points P and Q are given by

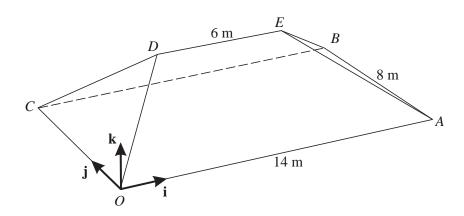
$$\overrightarrow{OP} = \begin{pmatrix} -2\\ 3\\ 1 \end{pmatrix}$$
 and  $\overrightarrow{OQ} = \begin{pmatrix} 2\\ 1\\ q \end{pmatrix}$ ,

where q is a constant.

(i) In the case where q = 3, use a scalar product to show that  $\cos POQ = \frac{1}{7}$ .

[3]

(ii) Find the values of q for which the length of  $\overrightarrow{PQ}$  is 6 units.



The diagram shows the roof of a house. The base of the roof, *OABC*, is rectangular and horizontal with OA = CB = 14 m and OC = AB = 8 m. The top of the roof *DE* is 5 m above the base and *DE* = 6 m. The sloping edges *OD*, *CD*, *AE* and *BE* are all equal in length.

Unit vectors  $\mathbf{i}$  and  $\mathbf{j}$  are parallel to *OA* and *OC* respectively and the unit vector  $\mathbf{k}$  is vertically upwards.

- (i) Express the vector  $\overrightarrow{OD}$  in terms of **i**, **j** and **k**, and find its magnitude.
- (ii) Use a scalar product to find angle *DOB*.

[4]

- 5. The position vectors of points A and B are  $\begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix}$  and  $\begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$  respectively, relative to an origin O.
  - (i) Calculate angle *AOB*. [3]
  - (ii) The point *C* is such that  $\overrightarrow{AC} = 3 \overrightarrow{AB}$ . Find the unit vector in the direction of  $\overrightarrow{OC}$ .

6. Relative to an origin O, the position vectors of the points A and B are given by

$$\overrightarrow{OA} = \begin{pmatrix} 4\\1\\-2 \end{pmatrix}$$
 and  $\overrightarrow{OB} = \begin{pmatrix} 3\\2\\-4 \end{pmatrix}$ .

(i) Given that *C* is the point such that  $\overrightarrow{AC} = 2 \overrightarrow{AB}$ , find the unit vector in the direction of  $\overrightarrow{OC}$ .

The position vector of the point *D* is given by  $\overrightarrow{OD} = \begin{pmatrix} 1 \\ 4 \\ k \end{pmatrix}$ , where *k* is a constant, and it is given

- that  $\overrightarrow{OD} = m\overrightarrow{OA} + n\overrightarrow{OB}$ , where *m* and *n* are constants.
- (ii) Find the values of *m*, *n* and *k*.

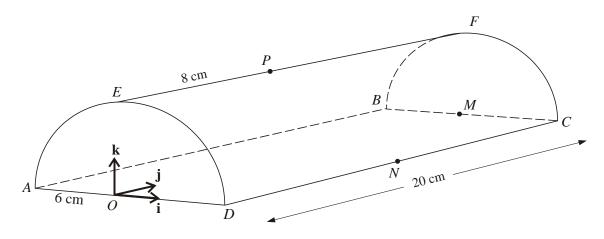
[4]

7. The diagram shows a cube  $OAB \bigoplus_{A, A} EE$  in which the length of each side is 4 units. The unit vectors **i**, **j** and **k** are parallel to and respectively. The mid-points of *OA* and *DG* are *P* and *Q* respectively and *R* is the centre of the square face *ABFE*.

| (i)   | Express each of the vectors $\overrightarrow{PR}$ and $\overrightarrow{PQ}$ in terms of <b>i</b> , <b>j</b> and <b>k</b> . |     |
|-------|----------------------------------------------------------------------------------------------------------------------------|-----|
|       |                                                                                                                            | [3] |
| (ii)  | Use a scalar product to find angle QPR.                                                                                    | [4] |
| (iii) | Find the perimeter of triangle PQR, giving your answer correct to 1 decimal place.                                         |     |

[3]

| 8. |       | Relative to an origin <i>O</i> , the position vectors of points <i>A</i> and <i>B</i> are $2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $3\mathbf{i} - 2\mathbf{j} + p\mathbf{k}$ respectively. |     |  |  |  |
|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|    | (i)   | Find the value of $p$ for which $OA$ and $OB$ are perpendicular.                                                                                                                               | [2] |  |  |  |
|    | (ii)  | In the case where $p = 6$ , use a scalar product to find angle <i>AOB</i> , correct to the nearest degree.                                                                                     | [3] |  |  |  |
|    | (iii) | Express the vector $\overrightarrow{AB}$ is terms of p and hence find the values of p for which the length of AB is 3.5 units.                                                                 | [4] |  |  |  |



The diagram shows a semicircular prism with a horizontal rectangular base *ABCD*. The vertical ends *AED* and *BFC* are semicircles of radius 6 cm. The length of the prism is 20 cm. The mid-point of *AD* is the origin *O*, the mid-point of *BC* is *M* and the mid-point of *DC* is *N*. The points *E* and *F* are the highest points of the semicircular ends of the prism. The point *P* lies on *EF* such that EP = 8 cm.

Unit vectors **i**, **j** and **k** are parallel to *OD*, *OM* and *OE* respectively.

(i) Express each of the vectors  $\overrightarrow{PA}$  and  $\overrightarrow{PN}$  in terms of **i**, **j** and **k**.

[3]

(ii) Use a scalar product to calculate angle *APN*.



1.  $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$   $\overrightarrow{OB} = 4\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ 

 $4 + 9 + (p + 1)^2 = 49$ Correct method for forming an equation

$$\rightarrow p = 5 \text{ or } -7$$
 A14  
CAO

| 2. | (i)  | OA.OB = 14 - 16 - 4 = -6<br>Must be scalar from correct method.                                | M1 A1 |      |
|----|------|------------------------------------------------------------------------------------------------|-------|------|
|    |      | This is $-ve \rightarrow Obtuse$ angle.<br>co. Correct deduction from his scalar.              |       | B1√3 |
|    | (ii) | $\mathbf{AB} = 5\mathbf{i} + 10\mathbf{j} - 5\mathbf{k}$                                       |       |      |
|    |      | $\mathbf{AX} = \frac{2}{5} (\mathbf{AB})$                                                      |       |      |
|    |      | $\mathbf{OX} = \mathbf{OA} + \mathbf{AX}$<br>Needs $\mathbf{AB}$ and $\mathbf{OX}$ attempting. |       | M1   |
|    |      | $\mathbf{OX} = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ co                                     |       | A1   |
|    |      | Divides by the modulus<br>Must finish with a vector, not a scalar.                             |       | M1   |
|    |      | Unit vector = $\frac{1}{6}$ (4 <b>i</b> - 4 <b>j</b> + 2 <b>k</b> )                            |       | A1√4 |

Correct for his **OX**.

3.

$$\overrightarrow{OP} = \begin{pmatrix} -2\\ 3\\ 1 \end{pmatrix}$$
 and  $\overrightarrow{OQ} = \begin{pmatrix} 2\\ 1\\ q \end{pmatrix}$ 

(i) 
$$\begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ q \end{pmatrix}$$
 with  $q = 3, = -4+3+3=2$  M1

Use of  $a_1a_2+b_1b_2+c_1c_2$ .

$$= \sqrt{14} \cdot \sqrt{14} \cos \theta = 2, \cos \theta = \frac{1}{7}$$
 M1

Dot product linked with moduli and cos.

A13

co

(ii) 
$$\overrightarrow{PQ} = \mathbf{q} - \mathbf{p} = \begin{pmatrix} 4 \\ -2 \\ q-1 \end{pmatrix}$$
 M1

Allow for  $\mathbf{p} - \mathbf{q}$  or  $\mathbf{q} - \mathbf{p}$ 

$$16 + 4 + (q-1)^2 = 36$$
 M1 A1  
Use of modulus and Pythagoras

$$\rightarrow q = 5 \text{ or } q = -3$$
 A14  
Co (for both)

| 4. | (i)  | Vector $OD = 4i + 4j + 5k$<br>One off for each error. Column vectors ok                                | B2, 1 |     |
|----|------|--------------------------------------------------------------------------------------------------------|-------|-----|
|    |      | Magnitude = $\sqrt{4^2 + 4^2 + 5^2} = \sqrt{57}$<br>Correct use of Pythagoras.                         |       | M1  |
|    |      | $\rightarrow$ Magnitude = 7.55 m<br>Accept $\sqrt{57}$ .                                               |       | A14 |
|    | (ii) | Vector $\mathbf{OB} = 14\mathbf{i} + 8\mathbf{j}$<br>co                                                |       | B1  |
|    |      | <b>OD.OB</b> = $4 \times 14 + 4 \times 8 = 88$<br>Use of $x_1 x_2 + y_1 y_2 + z_1 z_2$ for his vectors |       | M1  |
|    |      | <b>OD.OB</b> = $\sqrt{57}$ . $\sqrt{260\cos\theta}$<br>Used correctly                                  |       | M1  |
|    |      | $\rightarrow$ Angle $DOB = 43.7^{\circ}$                                                               |       | A14 |
|    |      | со                                                                                                     |       | [8] |

$$\mathbf{a} = \begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}.$$

Ok to work throughout with column vectors or with **i.j.k** 

(i) 
$$\mathbf{a,b} = 3 + 12 + 12 = 27$$
 M1  
Use of  $x_1x_2 + y_1y_2 + z_1z_2$ 

 $\mathbf{a.b} = \sqrt{54} \times \sqrt{21}\cos\theta \qquad \qquad \mathbf{M1}$ Use of  $\sqrt{\sqrt{\cos\theta}}$ 

 $\rightarrow \theta = 36.7^{\circ}$  or 0.641 radians In either degrees or in radians.

(ii) Vector 
$$AB = \mathbf{b} - \boldsymbol{\alpha} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix}$$
 M1

For use of  $\mathbf{b} - \mathbf{a}$ .

Vector 
$$OC = \begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 6 \end{pmatrix}$$
 M1

For  $\mathbf{a} + 3(\mathbf{b} - \mathbf{a})$  or equivalent

Unit vector = Vector 
$$OC + 9$$
.M1For division by Modulus of  $OC$ .

$$= \frac{1}{2}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$$
 A14  
Co.

| [7 | 1 |
|----|---|
|    |   |

A13

6. (i) 
$$\overrightarrow{AB} = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$$
 and  $\overrightarrow{AC} = \begin{pmatrix} -2 \\ 2 \\ -4 \end{pmatrix}$  M1  
For  $\pm$  (b - a) (not b + a)  
 $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = \begin{pmatrix} 2 \\ 3 \\ -6 \end{pmatrix}$  A1  
Co  
Unit vector  $= \frac{1}{7} \begin{pmatrix} 2 \\ -3 \\ -6 \end{pmatrix}$  M1  
Division by the modulus  
 $\sqrt{10}$  for his  $\overrightarrow{OC}$   
(ii)  $m \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} + n \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ k \end{pmatrix}$   
 $\rightarrow 4m + 3n = 1$  and  $m + 2n = 4$   
Forming 2 simultaneous equations  
 $\rightarrow m = -2$  and  $n = 3$  A1  
 $co$   
 $\rightarrow k = -8$  M1A1 4

Equation for k in terms of m and n. co

[8]

7. (i) 
$$\overrightarrow{PR} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \overrightarrow{PQ} = \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix}$$
  
All elements of  $\overrightarrow{PR}$  – any notation ok.

Loses one mark for each error in  $\overrightarrow{PQ}$ 

## $\overrightarrow{PQ}$ . $\overrightarrow{PR} = -4 + 4 + 8 = 8$ (ii) M1

Must be scalar

 $\left|\overrightarrow{PQ}\right| = \sqrt{24} \left|\overrightarrow{PR}\right| = \sqrt{12}$ M1

**B**1

B2, 13

As long as this is used with dot product

$$\overrightarrow{PQ} \quad \overrightarrow{PR} = \sqrt{12} \sqrt{24} \cos QPR$$
Everything linked
M1

 $(\overrightarrow{QP}, \overrightarrow{PR} \text{ used} - \text{still gains all M marks})$ 

Angle 
$$QPR = 61.9^{\circ}$$
 or 1.08 rad A14  
Co

(iii) 
$$\overrightarrow{QR} = \begin{pmatrix} 4\\0\\-2 \end{pmatrix} |\overrightarrow{QR}| = \sqrt{20}$$
 M1

For correct  $\overrightarrow{QR}$  – cosine rule ok.

Perimeter =  $\sqrt{12} + \sqrt{24} + \sqrt{20} = 12.8$  cm Adds three roots. Co – beware fortuitous answers from incorrect sign in vectors.

[10]

M1 A13

|       | $\mathbf{OA} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}, \mathbf{OB} = 3\mathbf{i} - 2\mathbf{j} + p\mathbf{k}$                                  |     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (i)   | $(2\mathbf{i} + \mathbf{j} + 2\mathbf{k}).$ $(3\mathbf{i} - 2\mathbf{j} + p\mathbf{k}) = 0$<br>For $x_1x_2 + y_1y_2 + z_1z_2$ (in (i) or (ii)) | M1  |
|       | $\rightarrow 6 - 2 + 2p = 0$                                                                                                                   |     |
|       | $\rightarrow p = -2$                                                                                                                           | A12 |
|       | со                                                                                                                                             |     |
| (ii)  | $(2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ . $(3\mathbf{i} - 2\mathbf{j} + 6\mathbf{k})$<br>nb Part (ii) gains 4 marks if (i) missing.         |     |
|       | $\rightarrow$ 6 – 2 + 12 allow for ± this<br>co (M1 here if (i) not done)                                                                      | A1  |
|       | $=\sqrt{9} \times \sqrt{49} \cos \theta$                                                                                                       | M1  |
|       | All connected correctly<br>$\rightarrow \theta = 40^{\circ}$<br>co                                                                             | A13 |
|       |                                                                                                                                                |     |
| (iii) | AB = i - 3j + (p - 2)k<br>Must be for AB, not BA.                                                                                              | B1  |
|       | $1^2 + 3^2 + (p-2)^2 = 3.5^2$<br>Pythagoras (allow if $$ wrong once)                                                                           | M1  |
|       |                                                                                                                                                | DM1 |
|       | Method of solution.                                                                                                                            |     |
|       | $\rightarrow p = 0.5 \text{ or } 3.5$<br>co                                                                                                    | A14 |
|       | (use of <b>BA</b> can score the last 3 marks)                                                                                                  |     |
|       |                                                                                                                                                |     |

| 9. | (i) | $\overrightarrow{PA} = -6\mathbf{i} - 8\mathbf{j} - 6\mathbf{k}$ | B1      |  |
|----|-----|------------------------------------------------------------------|---------|--|
|    |     | Co – column vectors ok                                           |         |  |
|    |     | $\overrightarrow{PN} = 6\mathbf{i} + 2\mathbf{j} - 6\mathbf{k}$  | B2, 1 3 |  |
|    |     | One off for each error<br>(all incorrect sign – just one error)  |         |  |

8.

[9]

(ii) 
$$\overrightarrow{PA}.\overrightarrow{PN} = -36 - 16 + 36 = -16$$
 M1  
Use of  $x_1x_2 + y_1y_2 + z_1z_2$ 

$$\cos APN = \frac{-16}{\sqrt{136}\sqrt{76}}$$
M1  
Modulus worked correctly for either one

M1 Division of "-16" by "product of moduli"

$$\rightarrow APN = 99^{\circ}$$
 A14  
Allow more accuracy

© Doublestruck & CIE - Licensed to Brillantmont International School