P3 Polynomial and Functions Revision Questions	Modulus	Name: Class: Date:	
Time:	55 minutes		
Marks:	38 marks		

Comments:

The polynomial $x^4 + 5x + a$ is denoted by p(x). It is given that $x^2 - x + 3$ is a factor of p(x).

(i) Find the value of a and factorise p(x) completely.

[6]

[2]

(ii) Hence state the number of real roots of the equation p(x) = 0, justifying your answer.

2. The polynomial $x^4 + 3x^2 + a$, where a is *a* constant, is denoted by p(x). It is given that $x^2 + x + 2$ is a factor of p(x). Find the value of *a* and the other quadratic factor of p(x).

- 3. The polynomial $4x^3 4x^2 + 3x + a$, where *a* is a constant, is denoted by p(x). It is given that p(x) is divisible by $2x^2 3x + 3$.
 - (i) Find the value of *a*.

(ii) When *a* has this value, solve the inequality p(x) < 0, justifying your answer.

[3]

4. The polynomial $x^3 - 2x + a$, where *a* is a constant, is denoted by p(x). It is given that (x + 2) is a factor of p(x).

(i)	Find the value of <i>a</i> .	
		[2]

(ii) When *a* has this value, find the quadratic factor of p(x).

[2]

5. Given that *a* is a positive constant, solve the inequality

$$|x-3a| > |x-a|.$$
 [4]

6. Solve the inequality |x - 2| > 3|2x + 1|.

7. Solve the inequality 2x > |x - 1|.

8. Find the set of values of x satisfying the inequality $|3^x - 8| < 0.5$, giving 3 significant figures in your answer.

1. (i) **EITHER:**

	Attempt division by $x^2 - x + 3$ reaching a partial quotient $x^2 + x$	B 1			
	Complete division and equate constant remainder to zero	M1			
	Obtain answer $a = -6$	A1			
	OR				
	Commence inspection and reach unknown				
	factor of $x^2 - x + c$	B1			
	Obtain $3c = a$ and an equation in c	M1			
	Obtain answer $a = -6$	A1			
	State or obtain factor by $x^2 - x - 2$	B1			
	State or obtain factors $x + 2$ and $x - 1$ B1	+ B1	6		
(ii)	State that $x^2 + x - 2 = 0$, has two (real) roots			B1	
	Show that $x^2 - x + 3 = 0$, has no (real) roots			B12	[8]

2. EITHER:

Attempt division by $x^2 + x + 2$ reaching a partial quotient of $x^2 + kx$	M1	
Complete the division and obtain quotient $x^2 - x + 2$		A1
Equate constant remainder to zero and solve for a		M1
Obtain answer $a = 4$		A1

OR:

Calling the unknown factor $x^2 + bx + c$, obtain an equation in <i>b</i> and/or <i>c</i> or state without working two coefficients with the correct moduli	M1	
Obtain factor $x^2 - x + 2$	A1	
Use $a = 2c$ to find a	M1	
Obtain answer $a = 4$	A14	[4]

3. (i) *EITHER:*

Attempt division by $2x^2 - 3x + 3$ and state partial quotient $2x$	B1
Complete division and form an equation for <i>a</i>	M1
Obtain $a = 3$	A1
OR1:	
By inspection or using an unknown factor $bx + c$, obtain $b = 2$	B1
Complete the factorisation and obtain <i>a</i>	M1
Obtain $a = 3$	A1

OR2:

Find a complex root of $2x^2 - 3x + 3 = 0$ and substitute it in $p(x)$	M1
Equate a correct expression to zero	A1
Obtain $a = 3$	A1

OR3:

Use $2x^2 \equiv 3x - 3$ in p(x) at least once B1

Reduce the expression to the form a + c = 0, or equivalent M1

Obtain
$$a = 3$$
 A13

(ii) State answer
$$x < -\frac{1}{2}$$
 only B1

Carry out a complete method for showing $2x^2 - 3x + 3$ is never zero	M1
Complete the justification of the answer by showing that $2x^2 - 3x + 3 > 0$ for all <i>x</i>	A13
[These last two marks are independent of the B mark, so B0M1A1 is possible. Alternative methods include (a) Complete the square M1 and use a correct completion to justify the answer A1; (b) Draw a	
recognizable graph of $y = 2x^2 + 3x - 3$ or $p(x)$ M1 and use a correct graph to justify the answer A1; (c) Find the x-coordinate of the	
stationary point of $y = 2x^2 + 3x - 3$ and either find its y-coordinate	

coordinates to justify the answer A1.]

or determine its nature M1, then use minimum point with correct

[Do not accept \leq for <]

[6]

4.	(i)	Substitute $x = -2$ and equate to zero, or divide by $x + 2$ and equate constant reminder to zero, or use a factor $Ax^2 + Bx + C$ and reach an equation in <i>a</i>	M1	
		Obtain answer $a = 4$		A12
	(ii)	Attempt to find quadratic factor by division or inspection		M1
		State or exhibit quadratic factor $x^2 - 2x + 2$		A12
		[The M1 is earned if division reaches a partial quotient $x^2 + kx$, or if inspection has an unknown factor $x^2 + bx + c$ and an equation in <i>b</i> and/or <i>c</i> , or if inspection without working states two coefficients with the correct moduli.]		

[4]

5. **EITHER:**

	State or imply non-modular inequality $(x - 3a)^2 > (x - a)^2$, or	
	corresponding equation	B1
	Expand and solve the inequality, or equivalent	M1
	Obtain critical value 2a	A1
	State correct answer $x < 2a$ only	A1
OR:		
	State a correct linear equation for the critical value e.g. $x - 3a =$	
	-(x-a), or corresponding inequality	B1
	Solve the linear equation for <i>x</i> , or equivalent	M1
	Obtain critical value 2a	A1
	State correct answer $x < 2a$ only	A1
OR:		
	Make recognizable sketches of both $y = x-3a $ and $y = x-a $ on	
	a single diagram	B1
	Obtain a critical value from the intersection of the graphs	M1
	Obtain critical value 2a	A1
	Obtain correct answer $x < 2a$ only	A1

OR:

Make recognizable sketches of both $y = x-3a $ and $y = x-a $ on	
a single diagram	B 1
Obtain a critical value from the intersection of the graphs	M1
Obtain critical value 2a	A1
Obtain correct answer $x < 2a$ only	A1

6. EITHER

State or imply non-modular inequality $(x - 2)^2 > (3(2x + 1))^2$, or corresponding quadratic equation, or pair of linear equations $(x - 2) = \pm 3(2x + 1)$ B1 Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations M1

Obtain critical values
$$x = -1$$
 and $x = -\frac{1}{7}$ A1

State answer
$$-1 < x < -\frac{1}{7}$$
 A1

OR

Obtain the critical value x = -1 from a graphical method, or by inspection, or by solving a linear equation or inequality B1

Obtain the critical value
$$x = -\frac{1}{7}$$
 similarly B2

State answer
$$-1 < x < -\frac{1}{7}$$
 B1

[Do not condone \leq for <; accept $-\frac{5}{35}$ and -0.14 for $-\frac{1}{7}$.]

7. EITHER:

State or imply non-modular inequality $(2x)^2 > (x-1)^2$, or	
corresponding equation	B1

Expand and make a reasonable solution attempt at a 2- or 3- term quadratic

Obtain critical value
$$x = \frac{1}{3}$$
 A1

State answer
$$x > \frac{1}{3}$$
 only A1

OR:

State the relevant critical linear equation, i.e. 2x = 1 - x B1

Obtain critical value
$$x = \frac{1}{3}$$
 B1

State answer
$$x > \frac{1}{3}$$
 B1

State or imply by omission that no other answer exists

OR:

Obtain the critical value $x = \frac{1}{3}$ from a graphical method, or by	
inspection, or by solving a linear inequality	B2
1	

State answer
$$x > \frac{1}{3}$$
 B1

© Doublestruck & CIE - Licensed to Brillantmont International School

M1

B1

8. EITHER:

	State or imply non-modular inequality $-0.5 < 3^x - 8 < 0.5$, or $(3^x - 8)^2 < (0.5)^2$, or corresponding pair of linear equation or quadratic equation	B1
	Use correct method for solving an equation of the form $3^x = a$, where $a > 0$	M1
	Obtain critical values 1.83 and 1.95, or exact equivalents	A1
	State correct answer $1.83 < x < 1.95$	A1
OR:		
	Use correct method for solving an equation of the form $3^x = a$, where $a > 0$	M1
	Obtain one critical value, e.g. 1.95, or exact equivalent	A1
	Obtain the other critical value 1.83, or exact equivalent	A1
	State correct answer $1.83 < x < 1.95$	A1
	[Do not condone \leq for <, Allow final answer given in the form $1.83 < x$, (and) $x < 1.95$.]	
	[Exact equivalents must be ia terms of In or logarithms to base 10]	
	[SR: Solutions given as logarithms to base 3 can only earn M1 and B1 of the first scheme.]	