P3 Polynomial and Modulus Functions
Revision Questions

Name:
Class:

Date:

Time:	55 minutes
Marks:	38 marks

Comments:

1.

The polynomial $x^{4}+5 x+a$ is denoted by $\mathrm{p}(x)$. It is given that $x^{2}-x+3$ is a factor of $\mathrm{p}(x)$.
(i) Find the value of a and factorise $\mathrm{p}(x)$ completely.
(ii) Hence state the number of real roots of the equation $\mathrm{p}(x)=0$, justifying your answer.
2. The polynomial $x^{4}+3 x^{2}+a$, where a is a constant, is denoted by $\mathrm{p}(x)$. It is given that $x^{2}+x+2$ is a factor of $\mathrm{p}(x)$. Find the value of a and the other quadratic factor of $\mathrm{p}(x)$.
3. The polynomial $4 x^{3}-4 x^{2}+3 x+a$, where a is a constant, is denoted by $\mathrm{p}(x)$. It is given that $\mathrm{p}(x)$ is divisible by $2 x^{2}-3 x+3$.
(i) Find the value of a.
(ii) When a has this value, solve the inequality $\mathrm{p}(x)<0$, justifying your answer.
4. The polynomial $x^{3}-2 x+a$, where a is a constant, is denoted by $\mathrm{p}(x)$. It is given that $(x+2)$ is a factor of $\mathrm{p}(x)$.
(i) Find the value of a.
(ii) When a has this value, find the quadratic factor of $\mathrm{p}(x)$.
5. Given that a is a positive constant, solve the inequality

$$
|x-3 a|>|x-a|
$$

6. Solve the inequality $|x-2|>3|2 x+1|$.
7. Solve the inequality $2 x>|x-1|$.
8. Find the set of values of x satisfying the inequality $\left|3^{x}-8\right|<0.5$, giving 3 significant figures in your answer.
9. (i) EITHER:

Attempt division by $x^{2}-x+3$ reaching a partial quotient $x^{2}+x \quad$ B1
Complete division and equate constant remainder to zero M1
Obtain answer $a=-6 \quad$ A1
OR
Commence inspection and reach unknown factor of $x^{2}-x+c$ B1

Obtain $3 c=a$ and an equation in $c \quad$ M1
Obtain answer $a=-6 \quad$ A1
State or obtain factor by $x^{2}-x-2 \quad$ B1
State or obtain factors $x+2$ and $x-1 \quad$ B1 + B1
(ii) State that $x^{2}+x-2=0$, has two (real) roots B1

Show that $x^{2}-x+3=0$, has no (real) roots B12
2. EITHER:

Attempt division by $x^{2}+x+2$ reaching a partial quotient of $x^{2}+k x \quad$ M1
Complete the division and obtain quotient $x^{2}-x+2 \quad$ A1
Equate constant remainder to zero and solve for $a \quad$ M1
Obtain answer $a=4 \quad$ A1

OR:

Calling the unknown factor $x^{2}+b x+c$, obtain an equation in
b and/or c or state without working two coefficients with the
correct moduli
Obtain factor $x^{2}-x+2 \quad$ A1
Use $a=2 c$ to find $a \quad$ M1
Obtain answer $a=4 \quad$ A14
3. (i) EITHER:

Attempt division by $2 x^{2}-3 x+3$ and state partial quotient $2 x \quad$ B1
Complete division and form an equation for $a \quad$ M1
Obtain $a=3 \quad$ A1
OR1:
By inspection or using an unknown factor $b x+c$, obtain $b=2$
Complete the factorisation and obtain $a \quad$ M1
Obtain $a=3$

OR2:

Find a complex root of $2 x^{2}-3 x+3=0$ and substitute it in $\mathrm{p}(x)$
Equate a correct expression to zero
Obtain $a=3$
OR3:
Use $2 x^{2} \equiv 3 x-3$ in $\mathrm{p}(x)$ at least once
Reduce the expression to the form $a+c=0$, or equivalent
Obtain $a=3$
(ii) State answer $x<-\frac{1}{2}$ only

Carry out a complete method for showing $2 x^{2}-3 x+3$ is never zero
Complete the justification of the answer by showing that
$2 x^{2}-3 x+3>0$ for all x
[These last two marks are independent of the B mark, so B0M1A1 is possible. Alternative methods include (a) Complete the square M1 and use a correct completion to justify the answer A1; (b) Draw a recognizable graph of $y=2 x^{2}+3 x-3$ or $\mathrm{p}(x)$ M1 and use a correct graph to justify the answer A1; (c) Find the x-coordinate of the stationary point of $y=2 x^{2}+3 x-3$ and either find its y-coordinate or determine its nature M1, then use minimum point with correct coordinates to justify the answer A1.]
[Do not accept \leq for $<$]
4. (i) Substitute $x=-2$ and equate to zero, or divide by $x+2$ and equate constant reminder to zero, or use a factor $A x^{2}+B x+C$ and reach an equation in a

Obtain answer $a=4$
(ii) Attempt to find quadratic factor by division or inspection

State or exhibit quadratic factor $x^{2}-2 x+2$
[The M1 is earned if division reaches a partial quotient $x^{2}+k x$, or if inspection has an unknown factor $x^{2}+b x+c$ and an equation in b and/or c, or if inspection without working states two coefficients with the correct moduli.]

5. EITHER:

State or imply non-modular inequality $(x-3 a)^{2}>(x-a)^{2}$, or
corresponding equation \quad B1
Expand and solve the inequality, or equivalent
Obtain critical value $2 a$
State correct answer $x<2 a$ only

OR:

State a correct linear equation for the critical value, e.g. $x-3 a=$ $-(x-a)$, or corresponding inequality

Solve the linear equation for x, or equivalent
Obtain critical value $2 a \quad$ A1
State correct answer $x<2 a$ only

OR:

Make recognizable sketches of both $y=|x-3 a|$ and $y=|x-a|$ on a single diagram

Obtain a critical value from the intersection of the graphs M1
Obtain critical value $2 a \quad$ A1
Obtain correct answer $x<2 a$ only A1

6. EITHER

State or imply non-modular inequality $(x-2)^{2}>(3(2 x+1))^{2}$, or corresponding quadratic equation, or pair of linear equations $(x-2)= \pm 3(2 x+1)$

Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations

Obtain critical values $x=-1$ and $x=-\frac{1}{7}$
State answer $-1<x<-\frac{1}{7}$

OR

Obtain the critical value $x=-1$ from a graphical method, or by inspection, or by solving a linear equation or inequality

Obtain the critical value $x=-\frac{1}{7}$ similarly B2

State answer $-1<x<-\frac{1}{7}$
[Do not condone \leq for $<$ accept $-\frac{5}{35}$ and -0.14 for $-\frac{1}{7}$.]
7. EITHER:

State or imply non-modular inequality $(2 x)^{2}>(x-1)^{2}$, or
corresponding equation \quad B1
Expand and make a reasonable solution attempt at a 2- or 3- term M1
quadratic
Obtain critical value $x=\frac{1}{3}$
A1

State answer $x>\frac{1}{3}$ only

OR:
State the relevant critical linear equation, i.e. $2 x=1-x \quad$ B1
$\begin{array}{ll}\text { Obtain critical value } x=\frac{1}{3} & \text { B1 }\end{array}$
State answer $x>\frac{1}{3} \quad$ B1
State or imply by omission that no other answer exists B1
OR:
$\begin{array}{ll}\text { Obtain the critical value } x=\frac{1}{3} \text { from a graphical method, or by } & \\ \text { inspection, or by solving a linear inequality } & \text { B2 }\end{array}$
$\begin{array}{ll}\text { State answer } x>\frac{1}{3} & \text { B1 }\end{array}$
State or imply by omission that no other answer exists B1
8. EITHER:

State or imply non-modular inequality $-0.5<3^{x}-8<0.5$, or $\left(3^{x}-8\right)^{2}<(0.5)^{2}$, or corresponding pair of linear equation or quadratic equation

Use correct method for solving an equation of the form $3^{x}=a$,
where $a>0$
Obtain critical values 1.83 and 1.95, or exact equivalents A1
State correct answer $1.83<x<1.95$ A1
OR:

Use correct method for solving an equation of the form $3^{x}=a$, where $a>0$

Obtain one critical value, e.g. 1.95, or exact equivalent A1
Obtain the other critical value 1.83, or exact equivalent A1
State correct answer $1.83<x<1.95$ A1
[Do not condone \leq for $<$, Allow final answer given in the form $1.83<x$, (and) $x<1.95$.]
[Exact equivalents must be $\mathrm{i} a$ terms of In or logarithms to base 10]
[SR: Solutions given as logarithms to base 3 can only earn M1 and B1 of the first scheme.]

