P3 Exponential and Logarithm

Name:

Revision Questions

Class:

Time:	109 minutes
Marks:	93 marks

Comments:

Q1. (a) Write down the values of p, q and r given that:
(i) $8=2$;
(ii) $\frac{1}{8}=2^{q}$;
(iii) $\quad \sqrt{2}=2^{\prime}$.
(b) Find the value of x for which $\sqrt{2} \times 2^{x}=\frac{1}{8}$.

Q2. (a) Write each of the following in the form $\log _{a} k$, where k is an integer:
(i) $\log _{a} 4+\log _{a} 10$;
(ii) $\log _{a} 16-\log _{a} 2$;
(iii) $3 \log _{a} 5$.
(b) Use logarithms to solve the equation (1.5) $)^{3 x}=7.5$, giving your value of x to three decimal places.
(c) Given that $\log _{2} p=m$ and $\log _{8} q=n$, express $p q$ in the form $2 y$, where y is an expression in m and n.

Q3. (a) Write down the value of:
(i) $\quad \log _{a} 1$;
(ii) $\log _{a} a$.
(b) Given that

$$
\log _{a} x=\log _{a} 5+\log _{a} 6-\log _{a} 1.5
$$

find the value of x.

Q4. (a) Given that

$$
\log _{a} x=\log _{a} 16-\log _{a} 2
$$

write down the value of x.
(b) Given that
$\log _{a} y=2 \log _{a} 3+\log _{a} 4+1$
express y in terms of A, giving your answer in a form not involving logarithms.

Q5. (a) (i) Find the value of p for which $\sqrt{125}=5^{p}$.
(ii) Hence solve the equation $5^{2 x}=\sqrt{125}$.
(b) Use logarithms to solve the equation $3^{2 x-1}=0.05$, giving your value of x to four decimal places.
(c) It is given that

$$
\log _{a} x=2\left(\log _{a} 3+\log _{a} 2\right)-1
$$

Express x in terms of a, giving your answer in a form not involving logarithms.

Q6. (a) Given that $2 \ln x=5$, find the exact value of x.
(b) Solve the equation
$2 \ln x+\frac{15}{\ln x}=11$
giving your answers as exact values of x.

Q7. (a) Given that $3 \mathrm{e}^{x}=4$, find the exact value of x.
(b) (i) By substituting $y=e^{x}$, show that the equation $3 \mathrm{e}^{x}+20 \mathrm{e}^{-x}=19$ can be written as $3 y^{2}-19 y+20=0$.
(ii) Hence solve the equation $3 \mathrm{e}^{x}+20 \mathrm{e}^{-x}=19$, giving your answers as exact values.

Q8. (a) Given that $2 \log _{k} x-\log _{k} 5=1$, express k in terms of x. Give your answer in a form not involving logarithms.
(b) Given that $\log _{a} y=\frac{3}{2}$ and that $\log _{4} a=b+2$, show that $y=2^{p}$, where p is an expression in terms of b.

Q9. (a) Find the value of x in each of the following:
(i) $\log _{9} x=0$;
(ii) $\quad \log _{9} x=\frac{1}{2}$.
(b) Given that

$$
2 \log _{a} n=\log _{a} 18+\log _{a}(n-4)
$$

find the possible values of n.

Q10.(a) Given that $\log _{a} b=c$, express b in terms of a and c.
(b) By forming a quadratic equation, show that there is only one value of x which satisfies the equation $2 \log _{2}(x+7)-\log _{2}(x+5)=3$.

Q11.Find the value of $\log _{a}\left(a^{3}\right)+\log _{a}\left(\frac{1}{a}\right)$
(Total 2 marks)

Q12.Given that

$$
\log _{a} N-\log _{a} x=\frac{3}{2}
$$

express x in terms of a and N, giving your answer in a form not involving logarithms.

Q13.A student conducts an experiment and records the following data for two variables, x and y.

\mathbf{x}	1	2	3	4	5	6
\mathbf{y}	14	45	130	1100	1300	3400
$\log _{10} y$						

The student is told that the relationship between x and y can be modelled by an equation of the form $y=k b^{x}$
(a) Plot values of $\log _{10} y$ against x on the grid below.

(b) State, with a reason, which value of y is likely to have been recorded incorrectly.
(c) By drawing an appropriate straight line, find the values of k and b, giving your answers to two significant figures.
(Total 7 marks)

Q14.The variables y and x are related by an equation of the form

$$
y=a x^{n}
$$

where a and n are constants.
Let $Y=\log _{10} y$ and $X=\log _{10} x$.
(a) Show that there is a linear relationship between Y and X.
(b) The graph of Y against X is shown in the diagram.

Find the value of n and the value of a.

Q15.David has been investigating the population of rabbits on an island during a three-year period.

Based on data that he has collected, David decides to model the population of rabbits, R, by the formula

$$
R=50 \mathrm{e}^{0.5 t^{\mathrm{t}}}
$$

where t is the time in years after 1 January 2016.
(a) Using David's model:
(i) state the population of rabbits on the island on 1 January 2016;
(ii) predict the population of rabbits on 1 January 2021.
(b) Use David's model to find the value of t when $R=150$, giving your answer to three significant figures.
(c) Give one reason why David's model may not be appropriate.
(d) On the same island, the population of crickets, C, can be modelled by the formula

$$
C=1000 \mathrm{e}^{0.1}{ }^{1} t
$$

where t is the time in years after 1 January 2016.
Using the two models, find the year during which the population of rabbits first exceeds the population of crickets.

Solutions

M1.
(a) \quad (i) $\quad(p=) 3$
(ii) $\quad(q=)-3$

If not correct, ft on -p
B1F
(iii) $\quad(r=) \frac{1}{2}$

OE
B1
(b) $2^{\frac{1}{2}} \times 2^{x}=2^{-3} \Rightarrow 2^{\frac{1}{2}+x}=2^{-3}$

Using a law of indices or logs correctly to combine at least two of the powers of 2 PI

If not correct, ft on $x=q-r$ provided method shown

A1F

M2.
(a) (i) $\log _{4} 40$
(a) (i) $\log _{a} 40$.

$$
\Rightarrow x=-3 \frac{1}{2}
$$

(ii) $\log _{a} 8$

Accept $k=8$ '
(iii) $\log _{a} 125$

Accept ' $k=125$ ' but not $' k=5{ }^{\prime}$ '
(b) $\quad \log _{10}\left\{(1.5)^{x}\right\}=\log _{10} 7.5$

Correct statement having taken logs of both sides of (1.5 $)^{x}=7.5$ OE PI
or $3 x=\log _{15} 7.5$ seen
$3 x \log _{10} 1.5=\log _{10} 7.5$
$\log 1.5^{x}=3 x \log 1.5 O E$
$x=\frac{\lg 7.5}{3 \lg 1.5}=1.65645 \ldots=1.656$ to 3 dp
Both method marks must have been awarded with clear use of logarithms seen

A1
(c) $\log _{2} p=m \Rightarrow p=2 m ; \log _{8} q=n \Rightarrow q=8^{n}$

Either $p=2 m$ or $q=8$ seen or used

$$
\begin{aligned}
& p=2^{m} \text { and } q=2^{3 n} \\
& \qquad \text { Writing } 8^{n}=2^{3 n} \text { and having } p=2^{m}
\end{aligned}
$$

m1

$$
\begin{gathered}
p q=2^{m} \times\left(2^{3}\right)^{n}=2^{m} \times 2^{3 n} \text { so } p q=2^{m+3 n} \\
\text { Accept } y=m+3 n
\end{gathered}
$$

M3.
(a) (i) $\log _{a} 1=0$
(ii) $\log _{a} a=1$

B1
(b) $\log _{a} x=\log _{a}(5 \times 6)-\log _{a} 1.5$

One law of logs used correctly
$\log _{\sqrt{2}} x=\log _{\mathrm{a}}\left(\frac{5 \times 6}{1.5}\right)$
A second law of logs used correctly
M1
$\log _{2} x=\log _{2} 20 \Rightarrow x=20$
A1

M4. (a) $x=8$
No clear log law errors seen.
Condone answer left as $\frac{16}{2}$
B1
(b) $\log _{a} y=\log _{a} 3^{2}+\log _{a} 4+1$

One law of logs used correctly
$\log _{a} y=\log _{a}\left(3^{2} \times 4\right)+1$
Either a second law of logs used correctly or the 1 written as $\log _{a} a$

M1

$$
\begin{gathered}
\log _{a} y=\log _{a}\left(3^{2} \times 4\right)+\log _{a} a=\log _{a} 36 a \\
y=36 a \\
\text { CSO }
\end{gathered}
$$

M5.
(a) (i) $\sqrt{125}=\sqrt{25 \times 5}=5 \sqrt{5}$

OE eg $\sqrt{125}=\sqrt{5^{3}}$ or $5^{1.5}$ seen
$5^{p}=\sqrt{125} \Rightarrow p=1.5$
Correct value of p must be explicitly stated

Alternative:

$$
p \log 5=\frac{1}{2} \log 125
$$

OE egp $\log 5=\log 11.18$
or eg $p=\log _{5} \sqrt{225}$

$$
p \log 5=\frac{3}{2} \log 5 \Rightarrow p=\frac{3}{2}
$$

Correct value of p must be explicitly stated
(ii) $5^{2 x}=\sqrt{125}=5^{p} \Rightarrow x=0.5 p=0.75$

Must be $0.5 \times c$'s value of p
SC: $x=0.75$ with c 's ans (a)(i) $5^{1.5}$ scores B1F
B1F
(b) $\quad 3^{2 x-1}=0.05$
$(2 x-1) \log 3=\log 0.05$
Take logs of both sides and use $3^{d r}$ law of logs. Pl eg by $2 x-1=\log _{3} 0.05$ seen
$x=\frac{\log _{10} 0.05}{2 \log _{10} 3}+\frac{1}{2}$
Correct rearrangement to $x=\ldots$. PI
$=-0.8634(165 \ldots)=-0.8634$ to 4dp
Condone > 4 dp. Must see logs clearly used in solution, so NMS scores $0 / 3$
(c) $\log _{a} x=2\left(\log _{a} 3+\log _{a} 2\right)-1$
$=2 \log _{a}(3 \times 2)-1$
A valid law of logs used
$=\log _{c}\left(6^{2}\right)-1$

$$
\begin{aligned}
& =\log _{a} 36-\log _{a} a \\
& \qquad \log _{a} a=1 \text { quoted or used } \\
& \quad \operatorname{org}_{a} \frac{x}{k}=-1 \Rightarrow \frac{x}{k}=a^{-1}
\end{aligned}
$$

$O E$

$$
\log _{a} x=\log _{a}\left(\frac{36}{a}\right) \Rightarrow x=\frac{36}{a}
$$

CSO Must be $x=\frac{36}{a}$ or $x=36 a^{-1}$

A1

M6. (a) $\quad 2 \ln x=5$
$\ln x=\frac{5}{2} \quad x=\mathrm{e}^{\frac{5}{2}}$

B1
(b) $2 \ln x+\frac{15}{\ln x}=11$
$2(\ln x)^{2}-11 \ln x+15=0$
Forming quadratic equation in $\ln x$ condone poor notation

$$
\begin{aligned}
& (2 \ln x-5)(\ln x-3)=0 \\
& \quad \text { Attempt at factorisation/formula }
\end{aligned}
$$

$\ln x=\frac{5}{2}, 3 \quad$ condone $2 \ln x=5$
$x=\mathrm{e}^{\frac{5}{2}}, \mathrm{e}^{3}$
[SC for substituting $x=e^{\frac{5}{2}}$ or equivalent
into equation and verifying B1 $(1 / 5)$]
A1, A1

M7.
(a) $3 e^{x}=4$
$e^{x}=\frac{4}{3}$
M1
$x=\ln \frac{4}{3}$
A1
(b) (i) $3 \mathrm{e}^{-}+20 \mathrm{e}^{-x}=19$

$$
\begin{aligned}
& 3 y+\frac{20}{y}=19 \text { or } 3 e^{2 x}+20=19 e^{x} \\
& 3 y^{2}-19 y+20=0 \\
& A G
\end{aligned}
$$

(ii) $(3 y-4)(y-5)=0$

$$
y=\frac{4}{3} \cdot 5
$$

$\therefore x=\ln \frac{4}{3}, \ln 5$
In (their + ve y's)

M8.
(a) $\log _{k} x^{2}-\log _{k} 5=1$

A valid law of logs used correctly
M1
$\log _{k} \frac{x^{2}}{5}=1$
Another valid law of logs used correctly or correct method to reach $\log f(x)=\log 5 k$
$\log _{k} \frac{x^{2}}{5}=\log _{k} k \quad\left[\operatorname{or} \log x^{2}=\log 5 k\right]$
PI by next line

$$
\Rightarrow \frac{x^{2}}{5}=k \text { ie } k=\frac{x^{2}}{5}
$$

Accept either of these two forms.

A1
(b) $\quad \log _{a} y=\frac{3}{2} \quad \log _{4} a=b+2$
$\Rightarrow y=a^{\frac{3}{2}} \quad \Rightarrow a=4^{b+2}$
For either equation
$y=\left(4^{b+2}\right)^{\frac{3}{2}}$
Elimination of a from two correct equations not involving logarithms
m1

A1
3

M9.
(a) (i) $\quad(x=) 1$

CAO

B1
(ii) $\quad(x=) 3$

CAO
(b) $\log _{a} n^{2}=\log _{a} 18(n-4)$

A valid law of logs applied to correct logs A second valid law of logs applied to correct logs

$$
\begin{aligned}
n^{2}-18 n+72 & =0 \\
& \text { ACF of these terms eg } n^{2}-18 n=-72
\end{aligned}
$$

$$
\begin{aligned}
& (n-6)(n-12)=0 \\
& \quad \text { Valid method to solve quadratic, dep on } \\
& \text { both the previous Ms }
\end{aligned}
$$

$$
\begin{aligned}
n=6, n= & 12 \\
& \text { Both values required } \\
& \text { SC NMS max (out of 5) B3 for both } 6 \\
& \text { and } 12 \text { without uniqueness considered; } \\
& \text { max B1 for either } 6 \text { or } 12 \text { only }
\end{aligned}
$$

M10.(a) $b=a c$
(b) $\quad 2 \log _{2}(x+7)-\log _{2}(x+5)=3$
$\log _{2}(x+7)^{2}-\log _{2}(x+5)=3$
A law of logs used correctly on a correct expression.
M1
$\log _{2} \frac{(x+7)^{2}}{x+5}=3$
A further correct use of law of logs on a correct expression.
M1

$$
\begin{aligned}
& =3 \log _{2} 2=\log _{2} 2^{3} \\
& \Rightarrow \frac{(x+7)^{2}}{x+5}= \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { eg } \log f(x)=3 \log _{2} 2 \text { or } 3=\log _{2} 2^{3}\left(=\log _{2} 8\right) \text { seen } \\
&
\end{aligned}
$$

$$
\Rightarrow(x+7)^{2}=8(x+5)
$$

Correct equation having eliminated logs and fractions
$\Rightarrow x^{2}+14 x+49=8 x+40$
$\Rightarrow x^{2}+6 x+9(=0)$

Since $6^{2}-4(1)(9)=0$, (there is only) one value of x (which satisfies the given equation).

M11.

Marking Instructions	AO	Marks	Typical Solution	
Correctly applies a single law of logs with either term	AO1.1a	M1		
States correct final answer	AO1.1b	A1	$\log _{\mathrm{a}}\left(a^{3}\right)+\log _{\mathrm{a}}\left(\frac{1}{a}\right)$ $=3+$ (NMS scores full marks)	
		$=3-1$		
			$=2$	
Total 2 marks				

M12. $\log _{a} N-\log _{a} x=\frac{3}{2}$

$$
\log _{a} \frac{N}{x}=\frac{3}{2}
$$

A log law used correctly. PI by next line.
$\frac{N}{x}=a^{\frac{3}{2}}$
Logarithm(s) eliminated correctly
m1
$x=a^{-\frac{3}{2}} N$
ACF of RHS

A1

M13.

(a) \begin{tabular}{|l|c|c|l|}
\hline Marking Instructions \& AO \& Marks \& Typical Solution

\hline | Obtains (at least four) |
| :--- |
| correct $\log _{10} y$ values, in |
| table or plotted | \& AO1.1a \& M1 \& | $(1,1.1)(2,1.7)(3,2.1)(4$, |
| :--- |
| $3.0)$ |
| $(5,3.1)(6,3.5)$ |

\hline Plots all points correctly \& AO1.1b \& A1 \& | (Points above plotted on |
| :--- |
| grid) |

\hline
\end{tabular}

Page 19
(b)
(c)

Identifies $y=1100$ and gives correct reason	AO2.2b	B1	$(4,1100)$, as it is not on the line that the other points are close to
Uses laws of logs. (May earn in part (a) if laws of logs were used there)	A01.1a	M1	$\begin{aligned} & \log _{{ }_{10} y} y=\log _{10} k+x \log _{10} b \\ & \text { Vertical intercept } c=0.68 \\ & \left(=\log _{10} k\right) \end{aligned}$ Therefore from intercept: $k=10^{0.68}$
Draws straight line And calculates/measures the vertical intercept c and attempts $10^{\text {c }}$ or calculates/measures gradient m and attempts 10^{m} Alternatively uses regression line from calculator to get intercept and gradient	A01.1a	M1	Gradient $\mathrm{m}=0.48=\log _{10} b$ Therefore from gradient: $b=10^{0.48}$
Finds correct value of k or correct value of b - any accuracy	A01.1b	A1	$k=4.8$
Finds correct values for both k and b given to 2 sig figs	A01.1b	A1	$b=3.0$

M14.(a) $y=a x^{n} \Rightarrow \log _{10} y=\log _{10} a x^{n}$
$\log _{10} y=\log _{10} a+\log _{10} x^{n}$
Take logs and apply one log law in soln. correctly PI.
$\log _{10} y=\log _{10} a+n \log _{10} x$
Apply a further log law correctly.
m1
$Y=\log _{10} a+n X$ (which is a linear relationship between Y and X.) Correct eqn. with base 10 (or Ig or later evidence of use of base 10 if log without base here)
(b) $n=$ gradient of line

Stated or used.
Accept $n= \pm \frac{2}{3}$ OE as evidence
M1
$n=-\frac{2}{3}$
$n=-\frac{2}{3}(O E 3 s f)$
A1
$\log _{10} a=4$
Equating c's constant term [must involve a log] in c's (a) eqn. to the Y-intercept value PI by correct value of a

$$
a=10^{4}(=10000)
$$

M15.

(a)
(i)
(ii)
(b)

Marking Instructions	AO	Marks	Typical Solution
States correct value CAO	AO3.4	B1	50
States correct integer value CAO	AO3.4	B1	609
Forms correct equation and rearranges to obtain $\mathrm{e}^{0.5{ }^{\mathrm{t}}}=\ldots$	AO3.4	M1	$\begin{aligned} & 150=50 \mathrm{e}^{0.5 \mathrm{t}} \\ & \text { so } \mathrm{e}^{0.5 \mathrm{t}}=3 \end{aligned}$
Obtains the correct solution. Must give answer to 3 sf	A01.1b	A1	$t=2 \ln 3=2.20$
1 mark for any clear valid reason, must be set in context of the question	AO3.5b	E1	No constraint on the number of rabbits (ie could go off to infinity) OR Model is only based on the 3 years of the study. Things may change OR Continuous model but number of rabbits is discrete OR Ignores extraneous factors such as disease, predation, limited food supply
Forms an equation with exponentials by letting $R=$ C PI	AO3.4	M1	$\begin{aligned} & 1000 \mathrm{e}^{0.1^{t}}=50 \mathrm{e}^{0.5 t} \\ & 20=\mathrm{e}^{0.44^{t}} \end{aligned}$
Solves 'their' equation correctly	A01.1a	M1	$\begin{aligned} t & =\ln 20 \div 0.4 \\ & =7.49 \end{aligned}$
States correct answer as the year 2023 CAO NMS scores full marks for 2023	AO3.2a	A1	2023
Total 8 marks			

