P3 Trig Revision
Revision Questions
Time: 132 minutes
Marks: 110 marks

Comments:

Q1.Prove the identity $\cot ^{2} \theta-\cos ^{2} \theta \equiv \cot ^{2} \theta \cos ^{2} \theta$
(Total 3 marks)

Page 2

Q2.
(a) (i) Express $\sin 2 \theta$ and $\cos 2 \theta$ in terms of $\sin \theta$ and $\cos \theta$.
(ii) Given that $0<\theta<\frac{\pi}{2}$ and $\cos \theta=\frac{3}{5}$, show that $\sin 2 \theta=\frac{24}{25}$ and find thevalue of $\cos 2 \theta$.
(b) A curve has parametric equations

$$
x=3 \sin 2 \theta, y=4 \cos 2 \theta
$$

(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.
(ii) At the point P on the curve, $\cos \theta=\frac{3}{5}$ and $0<\theta<\frac{\pi}{2}$. Find an equation of the tangent to the curve at the point P.

Q3. (a) Solve the equation

$$
\operatorname{cosec} x=3
$$

giving all values of x in radians to two decimal places, in the interval $0 \leq x \leq 2 \pi$.
(b) By using a suitable trigonometric identity, solve the equation

$$
\cot ^{2} x=11-\operatorname{cosec} x
$$

giving all values of x in radians to two decimal places, in the interval $0 \leq x \leq 2 \pi$.

Q4. (a) Express $\cos x+3 \sin x$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give your value of α, in radians, to three decimal places.
(b) (i) Hence write down the minimum value of $\cos x+3 \sin x$.
(ii) Find the value of x in the interval $0 \leq x \leq 2 \pi$ at which this minimum occurs, giving your answer, in radians, to three decimal places.
(c) Solve the equation $\cos x+3 \sin x=2$ in the interval $0 \leq x \leq 2 \pi$, giving all solutions, in radians, to three decimal places.

Q5.
(a) (i) Given that $\tan 2 x+\tan x=0$, show that $\tan x=0$ or $\tan ^{2} x=3$.
(ii) Hence find all solutions of $\tan 2 x+\tan x=0$ in the interval $0^{\circ}<x<180^{\circ}$.
(b) (i) Given that $\cos x \neq 0$, show that the equation

$$
\sin 2 x=\cos x \cos 2 x
$$

can be written in the form

$$
2 \sin ^{2} x+2 \sin x-1=0
$$

(ii) Show that all solutions of the equation $2 \sin ^{2} x+2 \sin x-1=0$ are given by $\sin x=\frac{\sqrt{3}-1}{p}$, where p is an integer.

Q6.
(a) Express $2 \sin x+5 \cos x$ in the form $R \sin (x+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<$ 90°. Give your value of α to the nearest 0.1°.
(b) (i) Write down the maximum value of $2 \sin x+5 \cos x$.
(ii) Find the value of x in the interval $0^{\circ} \leq x \leq 360^{\circ}$ at which this maximum occurs, giving the value of x to the nearest 0.1°.

Q7. (a) Solve the equation $\sec x=-5$, giving all values of x in radians to two decimal places in the interval $0<x<2 \pi$.
(b) Show that the equation
$\frac{\operatorname{cosec} x}{1+\operatorname{cosec} x}-\frac{\operatorname{cosec} x}{1-\operatorname{cosec} x}=50$
can be written in the form

$$
\sec ^{2} x=25
$$

(c) Hence, or otherwise, solve the equation
$\frac{\operatorname{cosec} x}{1+\operatorname{cosec} x}-\frac{\operatorname{cosec} x}{1-\operatorname{cosec} x}=50$
giving all values of x in radians to two decimal places in the interval $0<x<2 \pi$.

Q8.(a) Express $\sin x-3 \cos x$ in the form $R \sin (x-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, giving your value of α to the nearest 0.1°.
(b) Hence find the values of x in the interval $0^{\circ}<x<360^{\circ}$ for which

$$
\sin x-3 \cos x+2=0
$$

giving your values of x to the nearest degree.

Q9.(a) Show that

$$
\frac{\sec ^{2} x}{(\sec x+1)(\sec x-1)}
$$

can be written as $\operatorname{cosec}^{2} x$.
(b) Hence solve the equation

$$
\frac{\sec ^{2} x}{(\sec x+1)(\sec x-1)}=\operatorname{cosec} x+3
$$

giving the values of x to the nearest degree in the interval $-180^{\circ}<x<180^{\circ}$.
(c) Hence solve the equation

$$
\frac{\sec ^{2}\left(2 \theta-60^{\circ}\right)}{\left(\sec \left(2 \theta-60^{\circ}\right)+1\right)\left(\sec \left(2 \theta-60^{\circ}\right)-1\right)}=\operatorname{cosec}\left(2 \theta-60^{\circ}\right)+3
$$

giving the values of θ to the nearest degree in the interval $0^{\circ}<\theta<90^{\circ}$.

Q10.(a) Show that the equation

$$
\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}=32
$$

can be written in the form

$$
\operatorname{cosec}^{2} \theta=16
$$

(b) Hence, or otherwise, solve the equation

$$
\frac{1}{1+\cos (2 x-0.6)}+\frac{1}{1-\cos (2 x-0.6)}=32
$$

giving all values of x in radians to two decimal places in the interval $0<x<\pi$.

Q11.(a) Use the Factor Theorem to show that $4 x-3$ is a factor of

$$
16 x^{3}+11 x-15
$$

(b) Given that $x=\cos \theta$, show that the equation

$$
27 \cos \theta \cos 2 \theta+19 \sin \theta \sin 2 \theta-15=0
$$

can be written in the form

$$
\begin{equation*}
16 x^{3}+11 x-15=0 \tag{4}
\end{equation*}
$$

(c) Hence show that the only solutions of the equation

$$
27 \cos \theta \cos 2 \theta+19 \sin \theta \sin 2 \theta-15=0
$$

are given by $\cos \theta=\frac{3}{4}$.

Q12.By forming and solving a quadratic equation, solve the equation

$$
8 \sec x-2 \sec ^{2} x=\tan ^{2} x-2
$$

in the interval $0<x<2 \pi$, giving the values of x in radians to three significant figures.
(Total 7 marks)

Q13.(a) By using a suitable trigonometrical identity, solve the equation

$$
\tan ^{2} \theta=3(3-\sec \theta)
$$

giving all solutions to the nearest 0.1° in the interval $0^{\circ}<\theta<360^{\circ}$.
(b) Hence solve the equation

$$
\tan ^{2}\left(4 x-10^{\circ}\right)=3\left[3-\sec \left(4 x-10^{\circ}\right)\right]
$$

giving all solutions to the nearest 0.1° in the interval $0^{\circ}<x<90^{\circ}$.

M1.

Marking Instructions	AO	Marks	Typical Solution
Recalls a correct trig identity, which could lead to a correct answer	AO1.2	B1	$\begin{aligned} & (\text { LHS } \equiv) \\ & \cot ^{2} \theta-\cos ^{2} \theta \\ & \equiv \frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\cos ^{2} \theta \\ & \equiv \cos ^{2} \theta\left(\frac{1}{\sin ^{2} \theta}\right)-1 \\ & \equiv \\ & \equiv \cos ^{2} \theta\left(\operatorname{cosec}^{2} \theta-1\right) \\ & \equiv \cos ^{2} \theta \cot ^{2} \theta \\ & (\equiv \text { RHS }) \\ & \text { AG } \end{aligned}$
Performs some correct algebraic manipulation and uses second identity to commence proof (at least two lines of argument)	AO2.1	R1	
Concludes a rigorous mathematical argument to prove given identity AG	AO2.1	R1	
Must start with one side and through clear logical steps arrive at the other side. In order to be sufficiently clear, each line should be a single step, unless clear further explanation is given.			
			Total 3 m

M2.
(a) (i) $\sin 2 \theta=2 \sin \theta \cos \theta$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
OE condone use of x etc, but variable must be consistent
(ii)

$$
\sin \theta=\frac{4}{5} \Rightarrow \sin 2 \theta=2 \times \frac{4}{5} \times \frac{3}{5}=\frac{24}{25}
$$

AG
Use of 106.26°.... B0

$$
\begin{aligned}
& 2 \times \sin \left(\cos ^{-1} \frac{3}{5}\right) \times \frac{3}{5} \\
& \cos 2 \theta=\frac{9}{25}-\frac{16}{25}=-\frac{7}{25} \\
& \quad-0.28
\end{aligned}
$$

(b) (i) $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=6 \cos 2 \theta, \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=-8 \sin 2 \theta$

Attempt both derivatives. ie $\quad p \cos 2 \theta$

Both correct. $q \sin 2 \theta$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4}{3} \frac{\sin 2 \theta}{\cos 2 \theta} \quad 1 \mathrm{SW}$
CSO OE

A1
3
(ii)

$$
P\left(\frac{72}{25},-\frac{28}{25}\right)
$$

$$
(2.88,-1.12)
$$

Gradient $=-\frac{4}{3} \times-\frac{24}{7}$
Their $\frac{q \sin 2 \theta}{p \cos 2 \theta}$ or $\frac{p \cos 2 \theta}{q \sin 2 \theta}$
must be working with rational numbers

Tangent $y+\frac{28}{25}=\frac{32}{7}\left(x-\frac{72}{25}\right)$ ISW
Any correct form.
$7 y=32 x-100$
Fractions in simplest form
Equation required

M3.
(a) $\sin x=\frac{1}{3}$, or sight of $\pm 0.34, \pm 0.11 \pi$ or ± 19.47 (or better)

M1

$$
\begin{gathered}
x=0.34,2.8(0) \quad \text { AWRT } \\
\\
\text { Penalise if incorrect answers in range; } \\
\text { ignore answers outside range }
\end{gathered}
$$

(b) $\operatorname{cosec}^{2} x-1=11-\operatorname{cosec} x$

Correct use of $\cot ^{2} x=\operatorname{cosec}^{2} x-1$

```
\mp@subsup{\operatorname{cosec}}{}{2}x+\operatorname{cosec}x-12(= 0)
```

$(\operatorname{cosec} x+4)(\operatorname{cosec} x-3)(=0)$
Attempt at Factors
Gives cosec x or - 12 when expanded Formula one error condoned
$\left.\begin{array}{l}\operatorname{cosec} x=-4,3 \\ \sin x=-\frac{1}{4}, \frac{1}{3}\end{array}\right\}$
Either Line

$$
\begin{aligned}
& \text { A1 } \\
& \sin x=-\frac{1}{4} \\
& \Rightarrow x=3.39,6.03 \quad \text { AWRT } \\
& 3 \text { correct or their two answers from (a) } \\
& \text { and 3.39, } 6.03 \\
& \text { 0.34, 2.8(0) } \\
& \text { AWRT } \\
& 4 \text { correct and no extras in range } \\
& \text { ignore answers outside range } \\
& \text { SC 19.47, 160.53, 194.48, } 345.52
\end{aligned}
$$

Alternative

$$
\begin{align*}
\frac{\cos ^{2} x}{\sin ^{2} x}= & 11-\frac{1}{\sin x} \\
\cos ^{2} x= & 11 \sin ^{2} x-\sin x \\
& \text { Correct use of trig ratios and multiplying } \\
& \text { by } 2 \sin ^{2} x \tag{M1}
\end{align*}
$$

$1-\sin ^{2} x=11 \sin ^{2} x-\sin x$
$0=12 \sin ^{2} x-\sin x-1$
(A1)
$0=(4 \sin x+1)(3 \sin x-1)$
Attempt at factors as above
$\sin x=-\frac{1}{4} \cdot \frac{1}{3}$

M4.
(a) $\quad R=\sqrt{10}$

Accept $R=3.16$ or better
(B1F)(B1)
$\tan \alpha=3$
OE

$$
\begin{aligned}
& \alpha=1.249 \text { ignore extra out of range } \\
& \text { AWRT 1.25 SC } \alpha=0.322 \text { B1 } \\
& \text { radians only }
\end{aligned}
$$

(b) (i) minimum value $=-\sqrt{10}$

$$
F \text { on } R
$$

(ii) $\cos (x-\alpha)=-1$

M1
$x=4.391$
AWRT 4.39
51.56° or .. $.57^{\circ}$ or better

A1F
$x-\alpha= \pm 0.886 \quad 5.397$
ignore extra out of range
Two values, accept $2 d p$ and condone 5.4 condone use of degrees

A1
$x=0.36296 . . \quad 2.13512 .$.
F on $x-\alpha$, either value. AWRT
$x=0.363$ CSO $2.135 \quad$ A1F

A1

M1
$\sin x=$ two numerical answers
Or equivalent using $\cos x$
A1F
$-1 \leq$ ans ≤ 1
$x=$ one correct answer

$$
x=0.363 \quad 2.135
$$

CSO 3 dp or better
A1
4
[10]

M5.
(a) (i) $\tan 2 x=\frac{2 \tan ^{2} x}{1-\tan ^{2}}$

Condone numerator as $\tan x+\tan x$

$$
\begin{aligned}
& 2 \tan x+\tan x\left(1-\tan ^{2} x\right)=0 \\
& \quad \text { Multiplying throughout by their denominator }
\end{aligned}
$$

$$
\tan x=0
$$

$$
\text { or }\left(2+1-\tan ^{2} x\right)=0 \Rightarrow \tan ^{2} x=3
$$

AG Must show $\tan x=0$ and $\tan ^{2} x=3$

Alternative

$$
\begin{align*}
& \tan 2 x=\frac{\sin 2 x}{\cos 2 x}=\frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x} \\
& \frac{2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}+\frac{\sin x}{\cos x} 0 \tag{B1}
\end{align*}
$$

$$
\begin{align*}
& 2 \sin x \cos ^{2} x+\sin x\left(\cos ^{2} x-\sin ^{2} x\right)=0 \\
& \sin x\left(2 \cos ^{2} x+\cos ^{2} x-\sin ^{2} x\right)=0 \tag{M1}
\end{align*}
$$

$\left.\begin{array}{l}\Rightarrow \sin x=0 \\ \Rightarrow \tan x=0\end{array}\right\}$ and $\left.3 \cos ^{2} x=\sin ^{2} x\right\}$
(ii) $x=60$ AND $x=120$

Condone extra answers outside interval eg 0 and 180
(b) (i) $2 \sin x \cos x=\cos x \mathrm{f}(x)$

Where $f(x)=\cos ^{2} x-\sin ^{2} x$
or $2 \cos ^{2} x-1$ or $1-2 \sin ^{2} x$
M1

$$
2 \sin x \cos x=\cos x\left(1-2 \sin ^{2} x\right)
$$

A1
$(\cos x \neq 0) \quad 2 \sin x=1-2 \sin ^{2} x$
$2 \sin ^{2} x+2 \sin x-1=0$

AG

(ii)

Correct use of quadratic formula or completing the square or correct factors

$$
\sin x=\frac{-2 \pm 2 \sqrt{3}}{4}
$$

$\sqrt{12}$ must be simplified and must have \pm.

A1
 $\sin x=\frac{-1-\sqrt{3}}{2}$ hasno solution $\sin x=\frac{\sqrt{3}-1}{2}$
 Reject one solution and state correct solution.

M6. (a) $\mathrm{R}=\sqrt{29}$
Accept 5.4 or 5.38, 5.39, 5.385....
$R \sin \alpha=5$ or $R \cos \alpha=2$ or $\tan \alpha=\frac{5}{2}$

$$
\alpha=68.2^{\circ}
$$

Condone $\alpha=68.20^{\circ}$
(b) (i) (maximum value $=$) $\sqrt{29}$
ft on R
B1ft
(ii) $\quad \sin (x+\alpha)=1$

Or $x+\alpha=90, x+\alpha=\frac{\pi}{2}$

$$
\begin{array}{r}
x=21.8^{\circ} \text { only } \\
\text { No ISW }
\end{array}
$$

M7.
(a) $\quad \cos x=-0.2$

Or tan $x=(\pm)^{\sqrt{24}}$

$$
\begin{aligned}
x=1.77,4.51 & \text { AWRT } \\
\text { One correct value } &
\end{aligned}
$$

> Second correct value and no extra values in interval 0 to $6.28 . .$.
> Ignore answers outside interval

SC
$x=1.8,4.5$ with or without working M1 A1 AO
SC (using degrees)
101.54, 281.54

M1 A1 A0
101.5, 281.5

M1 A0 AO
SC
No working shown
2 correct answers $3 / 3$
1 correct answer 2/3
(b) LHS
$=\frac{\operatorname{cosec} x(1-\operatorname{cosec} x)-\operatorname{cosec} x(1+\operatorname{cosec} x)}{(1+\operatorname{cosec} x)(1-\operatorname{cosec} x)}$
Correctly combining fractions but condone poor use, or omission, of brackets

$$
=\frac{\operatorname{cosec} x-\operatorname{cosec}^{2} x-\operatorname{cosec} x-\operatorname{cosec}^{2} x}{1-\operatorname{cosec}^{2} x}
$$

Allow recovery from incorrect brackets

$$
\begin{aligned}
& =\frac{-2 \operatorname{cosec}^{2} x}{-\cot ^{2} x} \text { or } \frac{-2\left(1+\cot ^{2} x\right)}{-\cot ^{2} x} \\
& \quad \begin{array}{l}
\text { Correct use of relevant trig identity } \\
\\
\text { eg } \operatorname{cosec}^{2} x=1+\cot ^{2} x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sec ^{2} x=50 \\
& \sec ^{2} x=25 \\
& \quad \begin{array}{l}
\text { All correct with no errors seen INCLUDING } \\
\text { correct brackets on 1st line }
\end{array}
\end{aligned}
$$

Or

$\frac{\operatorname{cosec} x}{1+\operatorname{cosec} x}-\frac{\operatorname{cosec} x}{1-\operatorname{cosec} x}=50$
$\operatorname{cosec} x(1-\operatorname{cosec} x)-\operatorname{cosec} x(1+\operatorname{cosec} x)$
$=50(1+\operatorname{cosec} x)(1-\operatorname{cosec} x)$
Correctly eliminating fractions but
condone poor use, or omission, of brackets

$$
\begin{aligned}
\operatorname{cosec} x-\operatorname{cosec}^{2} x-\operatorname{cosec} x & -\operatorname{cosec}^{2} x \\
& =50\left(1-\operatorname{cosec}^{2} x\right)
\end{aligned}
$$

Allow recovery from incorrect brackets
$48 \operatorname{cosec}^{2} x=50$
$\sin ^{2} x=\frac{24}{25} \Rightarrow \cos ^{2} x=\frac{1}{25}$
Correct use of relevant trig identity
eg $\sin ^{2} x=1-\cos ^{2} x$
(m1)
$\sec ^{2} x=25$
AG
All correct with no errors seen INCLUDING correct brackets on 1st line
(c) $\sec x= \pm 5$

Or cos $x= \pm 0.2$
$\operatorname{Ortan} x= \pm^{\sqrt{24}}$
$x=1.77,4.51,1.37,4.91$
(AWRT)
3 correct

4 correct and no other answers in interval Ignore answers outside interval

SC
1.8, 4.5, 1.4, 4.9

With or without working M1 A1

SC
their 2 answers from (a)
+1.37, 4.91 (AWRT) 2/3
SC For this part, if in degrees max mark is

M1 A0
SC
No working shown
4 correct answers 3/3
3 correct answers 2/3
0, 1, 2 correct answers 0/3

M8.(a) $\quad R=\sqrt{10}$
Accept 3.2 or better. Can be earned in (b)
B1
$\tan \alpha=3$
OE; MO if $\tan \alpha=-3$ seen
M1
$\alpha=71.6$ or better
$\alpha=71.56505 \ldots$
A1
(b) $\quad \sin (x \pm \alpha)=\frac{-2}{R}$
or their R and / or their α; PI
M1
$x(=-39.2+71.6)=32(.333)$
32 or better
Condone 32.4
A1
or

$$
x-71.6=219.2
$$

must see 219 and 72 or better PI by 291 or better as answer Condone extra solutions
m1

$$
x=291
$$

Condone 290.8 or better CSO Withhold final A1 if more than two answers given within interval

M9.(a) $\frac{\sec ^{2} x}{(\sec x+1)(\sec x-1)}=\frac{\sec ^{2} x}{\sec ^{2} x-1}$
$\sec ^{2} x=1+\tan ^{2} x$ used
M1 for correct use of $\sec ^{2} x=1+\tan ^{2} x$ at least once or $\left(\operatorname{cosec}^{2} x=1+\cot ^{2} x\right)$

$$
\begin{aligned}
& =\frac{\sec ^{2} x}{\tan ^{2} x} \text { or } \frac{1+\tan ^{2} x}{\tan ^{2} x} \\
& \qquad\left(=\frac{1}{\cos ^{2} x \tan ^{2} x}\right) \\
& =\frac{1}{\sin ^{2} x} \text { or } \cot ^{2} x+1 \\
& \text { Shown, with no errors }
\end{aligned}
$$

AG (No errors, omissions or poor notations seen)

$$
=\operatorname{cosec}^{2} x
$$

(b) $\operatorname{cosec}^{2} x=\operatorname{cosec} x+3$
$\operatorname{cosec}^{2} x-\operatorname{cosec} x-3=0$
must have $=0$
correct solution of the quadratic, or by completing the square

B1

$$
\begin{aligned}
\operatorname{cosec} x= & \frac{1 \pm \sqrt{13}}{2} \text { or }(2.3 \ldots \text { and }-1.3 \ldots) \\
& \left(\operatorname{cosec} x= \pm \sqrt{\frac{13}{4}}+\frac{1}{2}\right)
\end{aligned}
$$

Pl by values for $\sin x$
$\sin x=\frac{2}{1 \pm \sqrt{13}}$
B1F for $\operatorname{cosec} x=\frac{1}{\sin ^{2} x}$ seen or implied
B1F
$=0.434$ and -0.768 (or -0.767)
PI

B1 for any three values correct AWRT

B1

$$
\begin{aligned}
& x=26^{\circ}, 154^{\circ},-50^{\circ},-130^{\circ} \\
& \quad \text { B1 for all four values correct AWRT and no extras } \\
& \text { in the interval }-180<x<180^{\circ}
\end{aligned}
$$

(c) $2 \theta-60^{\circ}=x$
where x is a written value from candidate's (b) in degrees Pl by their answer

M1

$$
\begin{array}{r}
\theta=43^{\circ}, 5^{\circ} \\
\\
\text { cso }
\end{array}
$$

Ignore solutions outside interval $0^{\circ}<\theta<90^{\circ}$

M10.(a) LHS $=\frac{(1-\cos \theta)+(1+\cos \theta)}{(1+\cos \theta)(1-\cos \theta)}$
Combining fractions

$$
=\frac{2}{1-\cos ^{2} \theta} \text { Correctly simplified }
$$

$$
=\frac{2}{\sin ^{2} \theta} \quad \text { Use of } \sin ^{2} \theta+\cos ^{2} \theta=1
$$

AG; no errors seen

```
\mp@subsup{\operatorname{cosec}}{}{2}}=1
```

OR
$1-\cos \theta+1+\cos \theta=32(1+\cos \theta)(1-\cos \theta)(M 1)$
$2=32\left(1-\cos ^{2} \theta\right)(A 1)$
$2=32 \sin ^{2} \theta(m 1)$
$\operatorname{cosec}^{2} \theta=16$ (A1)
(b) $\quad \operatorname{cosec} y=(\pm) \sqrt{16}$ or better (PI by further working)

$$
\operatorname{or} \sin y=(\pm) \sqrt{\frac{1}{16}} \text { or better }
$$

```
(y =)
0.253, (2.889,) (3.394,) (6.031,) (-0.253)
```

Sight of any of these correct to 3dp or better
B1
($y=$)
0.25, 2.89, 3.39 (or better)

Must see these 3 answers, with or without either/ both of -0.25 or 6.03
Ignore answers outside interval -0.25 to 6.03 but extras in this interval scores AO
$x=0.43,1.74,2(.00), 0.17$
3 correct (must be 2 dp)
All 4 correct (must be 2 dp) and no extras in interval (ignore answers outside interval)

B1
B1

M11.(a) $\quad 16\left(\frac{3}{4}\right)^{3}+11\left(\frac{3}{4}\right)-15$
Evaluate $f\left(\frac{3}{4}\right)$ not long division.
$=\frac{27}{4}+\frac{33}{4}-15=0 \Rightarrow$ factor
Processing and conclusion.

For A1; minimum processing seen; $16 \times \frac{27}{64}+11 \times \frac{3}{4}-15=0 ; 15-15=0$
and no other working is AO minimum conclusion $=0$ hence factor
(b) $27 \cos \theta\left(2 \cos ^{2} \theta-1\right)+$

Use acf of $\cos 2 \theta$ formula

```
\(54 \cos ^{3} \theta-27 \cos \theta+38\left(1-\cos ^{2} \theta\right) \cos \theta-15=0\)
```

All in cosines.

$$
\begin{aligned}
& 16 \cos ^{3} \theta+11 \cos \theta-15=0 \\
& x=\cos \theta \Rightarrow 16 x^{3}+11 x-15=0
\end{aligned}
$$

Simplification and substitute $x=\cos \theta$ to obtain AG CSO.

For M1 mark; $\cos 2 \theta$ (eventually) in form $a \cos ^{2} \theta+b ; 19 \sin \theta \sin 2 \theta$ in form $c \cos \theta \sin ^{2} \theta$ and use $\sin ^{2} \theta=1-\cos ^{2} \theta$ to obtain $c \cos \theta\left(1-\cos ^{2} \theta\right)$
(c) $16 x^{3}+11 x-15=(4 x-3)\left(4 x^{2}+3 x+5\right)$

Factorise $f(x)$

$$
b^{2}-4 a c=3^{2}-4 \times 4 \times 5 \quad(=-71)
$$

Find discriminant of quadratic factor; or seen in formula
m1

$$
\begin{aligned}
& \left.b^{2}-4 a c x^{2}+3 x+5=0\right) \\
& \quad \text { Conclusion; CSO }
\end{aligned}
$$

$\begin{aligned} & \Rightarrow(\text { only) solutionis } \cos \theta=\frac{3}{4} \\ & \text { Condone } \frac{3}{4} \text { is (only) solution }\end{aligned}$

M1 $(4 x-3)\left(4 x^{2}+k x \pm 5\right)$ A1 fully correct
$m 1$ candidate's values of a, b, c used in expression for $b^{2}-4 a c$
or complete square to obtain $\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}$
A1 $b^{2}-4 a c$ correct or $\left(x+\frac{3}{8}\right)^{2}=\frac{9}{64}-\frac{5}{4} \quad\left(=-\frac{71}{64}\right)$ and stated
to be negative so no solution or solutions are not real (imaginary)
Accept imaginary solutions from calculator if stated to be imaginary.

Condone $\sqrt{-71}$ is negative, or similar, so no solution.
Conclusion $x=\frac{3}{4}$ is solution, or $\cos \theta=\frac{3}{4}$ is solution.

```
M12.( \(\left.8 \sec x-2 \sec ^{2} x=\tan ^{2} x-2\right)\)
\(8 \sec x-2 \sec ^{2} x=\sec ^{2} x-1-2\)
    Using \(\tan ^{2} x=\sec ^{2} x-1\) and NOT replacing \(\sec ^{2} x\)
    with \(1+\tan ^{2} x\).
```

$3 \sec ^{2} x-8 \sec x-3(=0)$
$(3 \sec x+1)(\sec x-3)(=0)$
Correct factors or correct use of quadratic equation formula or completing the square for 'their' equation.
$\sec x-\frac{8}{6}= \pm \sqrt{\frac{64}{36}+1}$

Or sec $x=\frac{8 \pm \sqrt{(-8)^{2}-4(3)(-3)}}{2(3)}$
$\sec x=3,-\frac{1}{3}($ or -0.33$)$
Both correct.

$$
\left(\cos x=\frac{1}{3} \text { or } 0.33\right)
$$

$\left(\sec x=-\frac{1}{3}\right.$ is impossible $)$
$x=1.23,5.05$
One correct. Must have earned A1 for correct quadratic, but independent of the second A1.

Both correct and no extras in $0 x \pi$.
 CAO

A1

M13.(a) $\sec ^{2} \theta-1=\ldots$
correct use of $\sec ^{2} \theta=1+\tan ^{2} \theta$

B1
$\sec ^{2} \theta+3 \sec \theta-10(=0)$
quadratic expression in $\sec \theta$ with all terms on one side
M1
$(\sec \theta+5)(\sec \theta-2)=0$
attempt at factors of their quadratic, $(\sec \theta \pm 5)(\sec \theta \pm 2)$, or correct use of quadratic formula
m1
$\sec \theta=-5,2$
A1
$\left(\cos \theta=-\frac{1}{5}, \frac{1}{2}\right)$
$60^{\circ}, 300^{\circ}, 101.5^{\circ}, 258.5^{\circ} \quad$ (AWRT)
3 correct, ignore answers outside interval
B1
all correct, no extras in interval
(b) $4 x-10^{\circ}=60^{\circ}, 101 \cdot 5^{\circ}, 258 \cdot 5^{\circ}, 300^{\circ}$
$4 x-10=$ any of their (60),

```
4x=70},111.5 ', 268.5', 310'
    all their answers from (a), BUT must have scored B1
```

A1F

```
x=17.5`, 27.9}\mp@subsup{9}{}{\circ},67.\mp@subsup{1}{}{\circ},77\cdot\mp@subsup{5}{}{\circ} (AWRT)
    CAO, ignore answers outside interval
```

A1

