P3 Trig Revision Revision Questions	Name: Class: Date:	
Time:	132 minutes	
Marks:	110 marks	
Comments:		

Q1.Prove the identity $\cot^2 \theta - \cos^2 \theta \equiv \cot^2 \theta \cos^2 \theta$

(Total 3 marks)

(2)

(3)

Q2. (a) (i) Express $\sin 2\theta$ and $\cos 2\theta$ in terms of $\sin \theta$ and $\cos \theta$.

(ii) Given that
$$0 < \theta < \frac{\pi}{2}$$
 and $\cos \theta = \frac{3}{5}$, show that $\sin 2\theta = \frac{24}{25}$ and find the value of $\cos 2\theta$. (2)

(b) A curve has parametric equations

$$x = 3 \sin 2\theta$$
, $y = 4 \cos 2\theta$

(i) Find
$$\frac{dy}{dx}$$
 in terms of θ .

(ii) At the point *P* on the curve, $\cos \theta = \frac{3}{5}$ and $0 < \theta < \frac{\pi}{2}$. Find an equation of the tangent to the curve at the point *P*.

(3) (Total 10 marks) **Q3.** (a) Solve the equation

$$\csc x = 3$$

giving all values of x in radians to two decimal places, in the interval $0 \le x \le 2\pi$.

(2)

(b) By using a suitable trigonometric identity, solve the equation

 $\cot^2 x = 11 - \operatorname{cosec} x$

giving all values of x in radians to two decimal places, in the interval $0 \le x \le 2\pi$.

(6) (Total 8 marks)

π

- **Q4.** (a) Express $\cos x + 3 \sin x$ in the form $R \cos(x \alpha)$, where R > 0 and $0 < \alpha < \overline{2}$. Give your value of α , in radians, to three decimal places.
 - (b) (i) Hence write down the minimum value of $\cos x + 3 \sin x$.
 - (ii) Find the value of x in the interval $0 \le x \le 2\pi$ at which this minimum occurs, giving your answer, in radians, to three decimal places.

(2)

(3)

(1)

(c) Solve the equation $\cos x + 3 \sin x = 2$ in the interval $0 \le x \le 2\pi$, giving all solutions, in radians, to three decimal places.

(4) (Total 10 marks)

Q5. (a) (i) Given that
$$\tan 2x + \tan x = 0$$
, show that $\tan x = 0$ or $\tan^2 x = 3$.

(3)

(ii) Hence find all solutions of $\tan 2x + \tan x = 0$ in the interval $0^{\circ} < x < 180^{\circ}$.

(1)

(3)

(b) (i) Given that $\cos x \neq 0$, show that the equation

$$\sin 2x = \cos x \cos 2x$$

can be written in the form

2

$$\sin^2 x + 2 \sin x - 1 = 0$$

(ii) Show that all solutions of the equation $2 \sin^2 x + 2 \sin x - 1 = 0$ are given by $\sin x = \frac{\sqrt{3} - 1}{p}$, where *p* is an integer.

(3) (Total 10 marks) **Q6.** (a) Express $2 \sin x + 5 \cos x$ in the form $R \sin(x + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give your value of α to the nearest 0.1°.

(3)

(b) (i) Write down the maximum value of $2 \sin x + 5 \cos x$.

- (1)
- (ii) Find the value of x in the interval $0^{\circ} \le x \le 360^{\circ}$ at which this maximum occurs, giving the value of x to the nearest 0.1°.

(2) (Total 6 marks) **Q7.** (a) Solve the equation $\sec x = -5$, giving all values of *x* in radians to two decimal places in the interval $0 < x < 2\pi$.

(3)

(b) Show that the equation

$$\frac{\csc x}{1 + \csc x} - \frac{\csc x}{1 - \csc x} = 50$$

can be written in the form

$$\sec^2 x = 25$$

(4)

(c) Hence, or otherwise, solve the equation

 $\frac{\csc x}{1 + \csc x} - \frac{\csc x}{1 - \csc x} = 50$

giving all values of x in radians to two decimal places in the interval $0 < x < 2\pi$.

(3) (Total 10 marks) **Q8.**(a) Express sin $x - 3 \cos x$ in the form $R \sin(x - \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving your value of α to the nearest 0.1°.

(3)

(b) Hence find the values of x in the interval $0^{\circ} < x < 360^{\circ}$ for which

$$\sin x - 3\cos x + 2 = 0$$

giving your values of *x* to the nearest degree.

(4) (Total 7 marks) Q9.(a) Show that

$$\frac{\sec^2 x}{(\sec x+1)(\sec x-1)}$$

can be written as $\csc^2 x$.

$$\frac{\sec^2 x}{(\sec x+1)(\sec x-1)} = \operatorname{cosec} x+3$$

giving the values of x to the nearest degree in the interval $-180^{\circ} < x < 180^{\circ}$.

(6)

(c) Hence solve the equation

$$\frac{\sec^2(2\theta - 60^\circ)}{(\sec(2\theta - 60^\circ) + 1)(\sec(2\theta - 60^\circ) - 1)} = \csc(2\theta - 60^\circ) + 3$$

giving the values of θ to the nearest degree in the interval $0^{\circ} < \theta < 90^{\circ}$.

(2) (Total 11 marks)

(3)

Q10.(a) Show that the equation

$$\frac{1}{1+\cos\theta} + \frac{1}{1-\cos\theta} = 32$$

can be written in the form

$$\csc^2 \theta = 16$$
 (4)

(b) Hence, or otherwise, solve the equation

$$\frac{1}{1 + \cos(2x - 0.6)} + \frac{1}{1 - \cos(2x - 0.6)} = 32$$

giving all values of x in radians to two decimal places in the interval $0 < x < \pi$.

(5) (Total 9 marks) **Q11.**(a) Use the Factor Theorem to show that 4x - 3 is a factor of

$$16x^3 + 11x - 15$$

(b) Given that $x = \cos \theta$, show that the equation

27 cos
$$\theta$$
 cos 2 θ + 19 sin θ sin 2 θ - 15 = 0

can be written in the form

$$16x^3 + 11x - 15 = 0$$

(c) Hence show that the only solutions of the equation

27 cos θ cos 2 θ + 19 sin θ sin 2 θ - 15 = 0

are given by $\cos \theta = \frac{3}{4}$.

(4) (Total 10 marks)

(2)

(4)

Q12.By forming and solving a quadratic equation, solve the equation

$$8 \sec x - 2 \sec^2 x = \tan^2 x - 2$$

in the interval $0 < x < 2\pi$, giving the values of x in radians to three significant figures.

(Total 7 marks)

Q13.(a) By using a suitable trigonometrical identity, solve the equation

$$\tan^2 \theta = 3(3 - \sec \theta)$$

giving all solutions to the nearest 0.1° in the interval 0° < θ < 360°.

(b) Hence solve the equation

 $\tan^2(4x - 10^\circ) = 3[3 - \sec(4x - 10^\circ)]$

giving all solutions to the nearest 0.1° in the interval $0^{\circ} < x < 90^{\circ}$.

(3) (Total 9 marks)

(6)

M1.

Marking Instructions	AO	Marks	Typical Solution	
Recalls a correct trig identity, which could lead to a correct answer	AO1.2	B1	$(LHS \equiv)$ $\cot^{2}\theta - \cos^{2}\theta$ $= \frac{\cos^{2}\theta}{\sin^{2}\theta} - \cos^{2}\theta$	
Performs some correct algebraic manipulation and uses second identity to commence proof (at least two lines of argument)	AO2.1	R1	$\equiv \frac{\sin^2 \theta}{\sin^2 \theta} - \cos^2 \theta$ $= \frac{\cos^2 \theta}{\cos^2 \theta} \left(\frac{1}{\sin^2 \theta}\right) - 1$ $\equiv \cos^2 \theta (\csc^2 \theta - 1)$ $\equiv \cos^2 \theta \cot^2 \theta$ $(\equiv \text{RHS})$	
Concludes a rigorous mathematical argument to prove given identity AG	AO2.1	R1	AG	
Must start with one side and through clear logical steps arrive at the other side. In order to be sufficiently clear, each line should be a single step, unless clear further explanation is given.				
Total 3 marks				

M2.

(a) (i) $\sin 2\theta = 2 \sin \theta \cos \theta$

B1

 $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$

OE condone use of x etc, but variable must be consistent

B1

2

(ii)
$$\sin \theta = \frac{4}{5} \Rightarrow \sin 2\theta = 2 \times \frac{4}{5} \times \frac{3}{5} = \frac{24}{25}$$
$$AG$$
$$Use of 106.26^{\circ} \dots B0$$

3

$$2 \times \sin\left(\cos^{-1}\frac{3}{5}\right) \times \frac{3}{5}$$

$$\cos 2\theta = \frac{9}{25} - \frac{16}{25} = -\frac{7}{25}$$

$$-0.28$$
B1
$$(b) \quad (i) \quad \frac{dx}{d\theta} = 6\cos 2\theta \quad , \quad \frac{dy}{d\theta} = -8\sin 2\theta$$

$$Attempt \ both \ derivatives. \ ie \ p \ \cos 2\theta$$

$$M1$$

$$Both \ correct. \qquad q \ sin 2\theta$$

$$A1$$

$$(i) \qquad P\left(\frac{72}{25}, -\frac{28}{25}\right)$$

$$(i) \qquad P\left(\frac{72}{25}, -\frac{28}{25}\right)$$

B1F

Gradient = $-\frac{4}{3} \times -\frac{24}{7}$ Their $\frac{q \sin 2\theta}{p \cos 2\theta}$ or $\frac{p \cos 2\theta}{q \sin 2\theta}$

(2.88, –1.12)

M1

Tangent

$$y + \frac{28}{25} = \frac{32}{7} \left(x - \frac{72}{25} \right)$$
ISW
Any correct form.

$$7y = 32x - 100$$
Fractions in simplest form
Equation required

			Brillantmont In	ternational School
			A1	3 [10]
М3.	sin <i>x</i> (a)	$=\frac{1}{3}$, or sight of ±0.34, ±0.11 π or ±19.47 (or better)	
			M1	
	<i>x</i> = 0.34, 2	.8(0) AWRT Penalise if incorrect answers in range; ignore answers outside range		
			A1	2
(b)	COSEC ² X –	$1 = 11 - \operatorname{cosec} x$ Correct use of cot ^e $x = \cos ec^{e} x - 1$		
		Correct use of corr x = cos ecr x - T	M1	
	$COSEC^2 X +$	cosec <i>x</i> – 12 (= 0)		
			A1	
	(cosec x +	4)(cosec $x - 3$) (= 0) Attempt at Factors		
		Gives cosec <i>x</i> or – 12 when expanded Formula one error condoned		
			m1	
cosec x = sin x =	= -4,3] 1_1_}			
	4'3 J	Either Line		
			A1	
sin x =	1 4			
	$\Rightarrow x = 3.3$	9, 6.03 AWRT 3 correct or their two answers from (a) and 3.39, 6.03		
			B1F	
	0.34, 2.8(0) AWRT 4 correct and no extras in range ignore answers outside range SC 19.47, 160.53, 194.48, 345.52 B1		

[8]

Alternative

$\frac{\cos^2 x}{\sin^2 x} = 11 - \frac{1}{\sin x}$	
$\cos^2 x = 11 \sin^2 x - \sin x$ Correct use of trig ratios and multiplying	
by 2 sin ² x	
	(M1)
$1 - \sin^2 x = 11 \sin^2 x - \sin x$ $0 = 12 \sin^2 x - \sin x - 1$	
	(A1)
$0 = (4 \sin x + 1)(3 \sin x - 1)$ Attempt at factors as above	
	(m1)
$\sin x = -\frac{1}{4}, \frac{1}{3}$	
	(A1)
As above	. ,
	(B1F)(B1)
M4. (a) $R = \sqrt{10}$ Accept $R = 3.16$ or better	
	B1
	ы
$\tan \alpha = 3$ OE	
	M1
α = 1.249 ignore extra out of range	
$AWRT 1.25 SC \alpha = 0.322 B1$ radians only	
	A1
(b) (i) minimum value = $-\sqrt{10}$	

B1F

3

 $\cos(x - \alpha) = -1$ (ii) M1 x = 4.391AWRT 4.39 51.56° or .. .57° or better A1F (c) $\cos(x-\alpha) = \frac{2}{\sqrt{10}}$ M1 $x - \alpha = \pm 0.886$ 5.397 ignore extra out of range Two values, accept 2dp and condone 5.4 condone use of degrees A1 *x* = 0.36296.. 2.13512.. F on $x - \alpha$, either value. AWRT A1F x = 0.3632.135 CSO 3dp or better A1 Alternative $10 \sin^2 x - 12 \sin x + 3 = 0$ Or equivalent quadratic using cos x

(ie $\sin^2 x + \cos^2 x = 1$ used)

sin x = two numerical answers Or equivalent using cos x

A1F

M1

 $-1 \le ans \le 1$ x = one correct answer

[10]

x = 0.363 2.135 CSO 3 dp or better

A1

B1

M1

M5.

(a)

(i)

 $\tan 2x = \frac{2\tan x}{1-\tan^2 x}$

Condone numerator as $\tan x + \tan x$

 $2\tan x + \tan x (1 - \tan^2 x) = 0$ Multiplying throughout by their denominator

 $\tan x = 0$ or $(2 + 1 - \tan^2 x) = 0 \Rightarrow \tan^2 x = 3$ **AG** Must show $\tan x = 0$ **and** $\tan^2 x = 3$

A1

3

Alternative

 $\Rightarrow \sin x = 0 \ \text{and} \quad 3\cos^2 x = \sin^2 x \ \Rightarrow \tan x = 0 \ \text{and} \quad \tan^2 x = 3 \ \end{cases}$

$$\tan 2x = \frac{\sin 2x}{\cos 2x} = \frac{2\sin x \cos x}{\cos^2 x - \sin^2 x}$$
$$\frac{2\sin x \cos x}{\cos^2 x - \sin^2 x} + \frac{\sin x}{\cos x} 0$$

 $2\sin x \cos^2 x + \sin x (\cos^2 x - \sin^2 x) = 0$

 $\sin x (2\cos^2 x + \cos^2 x - \sin^2 x) = 0$

(M1)

(B1)

(A1)

(3)

(ii) x = 60 **AND** x = 120Condone extra answers outside interval eg 0 and 180

(b) (i)
$$2\sin x \cos x = \cos x f(x)$$

Where $f(x) = \cos^2 x - \sin^2 x$
 $or 2\cos^2 x - 1$ or $1 - 2\sin^2 x$

$$2\sin x \cos x = \cos x(1 - 2\sin^2 x)$$

A1

M1

$$(\cos x \neq 0)$$
 $2\sin x = 1 - 2\sin^2 x$

 $\sin x = \frac{-2 \pm \sqrt{4 - 4 \times 2 \times (-1)}}{2 \times 2}$

the square or correct factors

 $2\sin^2 x + 2\sin x - 1 = 0$

Correct use of quadratic formula or completing

 $\sqrt{12}$ must be simplified and must have ±.

Reject one solution and state correct solution.

AG

(ii)

 $\sin x = \frac{-2 \pm 2\sqrt{3}}{4}$

3

M1

A1

E1

3

[10]

M6. (a)
$$R = \sqrt{29}$$

 $\sin x = \frac{-1 - \sqrt{3}}{2} \text{ has no solution} \\
\sin x = \frac{\sqrt{3} - 1}{2}$

Accept 5.4 or 5.38, 5.39, 5.385....

$$R\sin\alpha = 5 \text{ or } R\cos\alpha = 2 \text{ or } \tan\alpha = \frac{5}{2}$$

 $\alpha=68.2^\circ$

Condone
$$\alpha$$
 = 68.20°

A1

(b) (i) (maximum value =)
$$\sqrt{29}$$

ft on R
B1ft
(ii) $\sin(x + \alpha) = 1$
Or $x + \alpha = 90, x + \alpha = \frac{\pi}{2}$
M1
 $x = 21.8^{\circ}$ only

A1

M1

M7. (a) $\cos x = -0.2$

Or tan $x = (\pm)^{\sqrt{24}}$

x = 1.77, 4.51

AWRT

One correct value

		A1
Second correct value and no extra values in interval 0 to 6.28		
Ignore answers outside interval SC		
x = 1.8, 4.5 with or without working	M1 A1 A0	
SC (using degrees)		
101.54, 281.54	M1 A1 A0	
101.5, 281.5	M1 A0 A0	
SC		
No working shown		
2 correct answers 3/3		
1 correct answer 2/3		

Page 22

A1

3

[6]

M1

A1

m1

A1

Or

 $\frac{\csc x}{1 + \csc x} - \frac{\csc x}{1 - \csc x} = 50$

 $\csc x (1 - \csc x) - \csc x (1 + \csc x)$ = 50 (1 + $\csc x$)(1 - $\csc x$) Correctly eliminating fractions but condone poor use, or omission, of brackets

(M1)

 $cosec x - cosec^{2} x - cosec x - cosec^{2} x$ $= 50 (1 - cosec^{2} x)$ Allow recovery from incorrect brackets

(A1)

(b) LHS

$$= \frac{\csc x(1 - \csc x) - \csc x(1 + \csc x)}{(1 + \csc x)(1 - \csc x)}$$

Correctly combining fractions but
condone poor use, or omission, of brackets

Allow recovery from incorrect brackets

AG

All correct with no errors seen INCLUDING

correct brackets on 1st line

$$= \frac{-2\csc^2 x}{-\cot^2 x} \text{ or } \frac{-2(1+\cot^2 x)}{-\cot^2 x}$$

Correct use of relevant trig identity
eg cosec² x = 1 + cot² x

 $\frac{\operatorname{cosec} x - \operatorname{cosec}^2 x - \operatorname{cosec}^2 x}{1 - \operatorname{cosec}^2 x}$

 $2 \sec^2 x = 50$

 $48 \csc^2 x = 50$

(c)

$$\sin^{2} x = \frac{24}{25} \Rightarrow \cos^{2} x = \frac{1}{25}$$
Correct use of relevant trig identity
$$eg \sin^{2} x = 1 - \cos^{2} x$$
(m1)
$$\sec^{2} x = 25$$

 $\sec x = \pm 5$ $Or \cos x = \pm 0.2$

M1

A1

(A1)

x = 1.77, 4.51, 1.37, 4.91 (AWRT) 3 correct

 $Or \tan x = \pm \sqrt{24}$

4 correct and no other answers in interval Ignore answers outside interval

SC

1.8, 4.5, 1.4, 4.9 With or without working M1 A1

SC

their 2 answers from (a	a)	
+1.37, 4.91	(AWRT)	2/3
SC For this part, if in c	legrees	
max mark is		M1 A0
SC		
No working shown		
4 correct answers	3/3	
3 correct answers	2/3	
0, 1, 2 correct answers	s 0/3	

A1

[10]

3

B1

M1

A1

M1

A1

m1

 $\tan \alpha = 3$ OE; M0 if tan α = -3 seen α = 71.6 or better $\alpha = 71.56505...$ (b) $\sin(x \pm \alpha) = \frac{-2}{R}$ or their R and / or their α ; PI x(=-39.2+71.6)=32(.333)32 or better Condone 32.4 or Condone extra solutions x = 291than two answers given within interval

x –71.6 = 219.2 must see 219 and 72 or better PI by 291 or better as answer

Condone 290.8 or better CSO Withhold final A1 if more

A1

4

[7]

M9.(a)
$$\frac{\sec^2 x}{(\sec x+1)(\sec x-1)} = \frac{\sec^2 x}{\sec^2 x-1}$$

 $\sec^2 x = 1 + \tan^2 x$ used

M1 for correct use of sec² $x = 1 + tan^{2} x$ at least once or $(\operatorname{cose} c^2 x = 1 + \operatorname{cot}^2 x)$

 $R = \sqrt{10}$

Accept 3.2 or better. Can be earned in (b)

 $\left(=\frac{1}{\cos^2 x \tan^2 x}\right)$ $=\frac{1}{\sin^2 x} \text{ or } \cot^2 x + 1$ Shown, with no errors

 $= \frac{\sec^2 x}{\tan^2 x} \text{ or } \frac{1 + \tan^2 x}{\tan^2 x}$

A1

= cosec² x AG (No errors, omissions or poor notations seen)

A1

3

(b) $\operatorname{cosec}^{2} x = \operatorname{cosec} x + 3$ $\operatorname{cosec}^{2} x - \operatorname{cosec} x - 3 = 0$ must have = 0 correct solution of the quadratic, or by completing the square

cosec $x = \frac{1 \pm \sqrt{13}}{2}$ or (2.3... and - 1.3...) $\left(\csc x = \pm \sqrt{\frac{13}{4}} + \frac{1}{2} \right)$

PI by values for $\sin x$

M1

B1F

B1

 $\sin x = \frac{1}{1 \pm \sqrt{13}}$ B1F for cosec $x = \frac{1}{\sin^2 x}$ seen or implied

= 0.434 **and** - 0.768 (or -0.767) *PI*

B1 for any three values correct AWRT

B1

A1

 $x = 26^{\circ}, 154^{\circ}, -50^{\circ}, -130^{\circ}$ B1 for all four values correct AWRT and no extras in the interval -180 < $x < 180^{\circ}$

(c)
$$2\theta - 60^{\circ} = x$$

where x is a written value from candidate's (b) in degrees
PI by their answer
M1
 $\theta = 43^{\circ}, 5^{\circ}$
CSO
A1
Ignore solutions outside interval 0° < θ < 90°
2
[11]
M10.(a) LHS = $\frac{(1 - \cos \theta) + (1 + \cos \theta)}{(1 + \cos \theta)(1 - \cos \theta)}$
Combining fractions
M1
 $= \frac{2}{1 - \cos^{2} \theta}$
Correctly simplified
A1
 $= \frac{2}{\sin^{2} \theta}$
Use of sin θ + cos θ = 1
M1
 $2 \csc \theta = 32$
cosec θ = 16
AG; no errors seen
A1
 $\frac{OR}{1 - \cos \theta + 1 + \cos \theta} = 32(1 + \cos \theta)(1 - \cos \theta)(M1)$
 $2 = 32(1 - \cos \theta)(A1)$
 $3 = 3(1 - \cos \theta)(A1)$
 $4 = 3(1 - \cos \theta)(A1)$
 $3 = 3(1 - \cos \theta)(A1)$
 $3 = 3(1 - \cos \theta)(A1)$
 $3 = 3(1 - \cos \theta)(A1)$
 $4 = 3(1 - \cos \theta)$

[9]

$$\begin{array}{c} \begin{pmatrix} y = j \\ 0.253, (2.889,) (3.394,) (6.031,) (-0.253) \\ Sight of any of these correct to 3dp or better \\ \end{array}$$

$$\begin{array}{c} 10 \\ \begin{pmatrix} y = j \\ 0.25, 2.89, 3.39 \\ 0.25, 2.89, 3.39 \\ 0.25, 2.89, 3.39 \\ 0.25, 0.289, 3.39 \\ 0.289, 3.39 \\ 0$$

Use acf of $\cos 2\theta$ formula

B1

 $19 \sin\theta(2\sin\theta\cos\theta) - 15 = 0$ Use acf of sin 2 θ formula

 $54\cos^3\theta - 27\cos\theta + 38(1 - \cos^2\theta)\cos\theta - 15 = 0$ All in cosines.

M1

 $16\cos^3\theta + 11\cos\theta - 15 = 0$

$$x = \cos \theta \Rightarrow 16x^{3} + 11x - 15 = 0$$

Simplification and substitute $x = \cos\theta$ to obtain AG CSO.

A1

For M1 mark; $\cos 2\theta$ (eventually) in form $a \cos^2 \theta + b$; $19\sin\theta \sin 2\theta$ in form $c \cos\theta \sin^2 \theta$ and use $\sin^2 \theta = 1 - \cos^2 \theta$ to obtain $c \cos\theta$ ($1 - \cos^2 \theta$)

(c) $16x^3 + 11x - 15 = (4x - 3)(4x^2 + 3x + 5)$ Factorise f(x)

M1A1

 $b^2 - 4ac = 3^2 - 4 \times 4 \times 5$ (= -71) Find discriminant of quadratic factor; or seen in formula

m1

 $b^{2} - 4ac \ x^{2} + 3x + 5 = 0)$ Conclusion; CSO $\Rightarrow \text{ (only) solution is } \cos\theta = \frac{3}{4}$ Condone $\frac{3}{4}$ is (only) solution

A1

M1 $(4x - 3)(4x^2 + kx \pm 5)$ A1 fully correct

m1 candidate's values of a, b, c used in expression for b^2 – 4ac

or complete square to obtain $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}$

A1
$$b^2$$
 - 4ac correct or $\left(x + \frac{3}{8}\right)^2 = \frac{9}{64} - \frac{5}{4}$ $\left(= -\frac{71}{64}\right)$ and stated

to be negative so no solution or solutions are not real (imaginary) Accept imaginary solutions from calculator if stated to be imaginary.

Brillantmont International School

4

Condone $\sqrt{-71}$ is negative, or similar, so no solution. Conclusion $x = \frac{3}{4}$ is solution, or $\cos\theta = \frac{3}{4}$ is solution.

M12.(8sec
$$x - 2\sec x = \tan x - 2$$
)
8sec $x - 2\sec x = \sec x - 1 - 2$
Using tare $x = \sec x - 1$ and NOT replacing sec: x
with $1 + \tan x$.
M1
3sec: $x - 8\sec x - 3(= 0)$
A1
(3sec $x + 1$)(sec $x - 3$)(= 0)
Correct factors or correct use of quadratic equation
formula or completing the square for their' equation.
 $sec x = \frac{8 \pm \sqrt{(-8)^2 - 4(3)(-3)}}{2(3)}$
or sec $x = \frac{8 \pm \sqrt{(-8)^2 - 4(3)(-3)}}{2(3)}$
sec $x = 3$, $-\frac{1}{3}$ (or -0.33)
Both correct.
A1
sec $x = \frac{1}{\cos x}$
P1
B1
 $\left(\cos x = \frac{1}{3} \text{ or } 0.33\right)$
 $\left(\sec x = -\frac{1}{3} \text{ is impossible}\right)$
 $x = 1.23, 5.05$
One correct. Must have earned A1 for correct quadratic, but independent of the second A1.

[10]

[7]

A1 **M13.**(a) $\sec^2 \theta - 1 = ...$ correct use of $\sec^2\theta = 1 + \tan^2\theta$ B1 $\sec^2\theta$ + $3\sec\theta$ - 10 (= 0) quadratic expression in $\sec\theta$ with all terms on one side M1 $(\sec\theta + 5)(\sec\theta - 2) = 0$ attempt at factors of their quadratic, $(\sec\theta \pm 5)(\sec\theta \pm 2)$, or correct use of quadratic formula m1 $\sec\theta = -5, 2$ A1 $\left(\cos\theta = -\frac{1}{5}, \frac{1}{2}\right)$ 60°, 300°, 101.5°, 258.5° (AWRT) 3 correct, ignore answers outside interval B1 all correct, no extras in interval B1

Both correct and no extras in $0 x \pi$.

CAO

(b) $4x - 10^\circ = 60^\circ$, $101 \cdot 5^\circ$, $258 \cdot 5^\circ$, 300° 4x - 10 = any of their (60),

M1

6

4*x* = 70°, 111·5 °, 268· 5°, 310°

all their answers from (a), BUT must have scored B1

A1F

 $x = 17 \cdot 5^{\circ}, 27 \cdot 9^{\circ}, 67.1^{\circ}, 77 \cdot 5^{\circ}$ (AWRT) CAO, ignore answers outside interval

A1