P3 Differentiation Revision

\qquad
Time:
141 minutes
Marks:
119 marks

Comments:

Q1.
(a) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=x \mathrm{e}^{2 x}$.
(ii) Find an equation of the tangent to the curve $y=x \mathrm{e}^{2 x}$ at the point $\left(1, \mathrm{e}^{2}\right)$
(b) Given that $y=\frac{2 \sin 3 x}{1+\cos 3 x}$, use the quotient rule to show that
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k}{1+\cos 3 x}$
where k is an integer.

Q2.A curve is defined by the parametric equations

$$
x=t^{3}+2, \quad y=t^{2}-1
$$

(a) Find the gradient of the curve at the point where $t=-2$

Q3. A curve is defined by the equation $2 y+\mathrm{e}^{2 x} y^{2}=x^{2}+C$, where C is a constant. The point $P=\left(1, \frac{1}{\mathrm{e}}\right)$ lies on the curve.
(a) Find the exact value of C.
(b) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(c) Verify that $P=\left(1, \frac{1}{\mathrm{e}}\right)$ is a stationary point on the curve.

Q4. (a) Differentiate $\ln x$ with respect to x.
(b) Given that $y=(x+1) \ln x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(c) Find an equation of the normal to the curve $y=(x+1) \ln x$ at the point where $x=1$.

Q5. A curve is defined by the equation $4 x^{2}+y^{2}=4+3 x y$. Find the gradient at the point $(1,3)$ on this curve.

Q6. A curve has equation $y=\mathrm{e}^{-4}\left(x^{2}+2 x-2\right)$.
(a) Show that $\frac{d y}{d x}=2 \mathrm{e}^{-4 x}\left(5-3 x-2 x^{2}\right)$.
(b) Find the exact values of the coordinates of the stationary points of the curve.

Q7. A curve is defined by the equation

$$
x^{2}+x y=e^{y}
$$

Find the gradient at the point $(-1,0)$ on this curve.

Q8.A curve has equation $y=\frac{2 x+3}{4 x^{2}+7}$
(a) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(ii) Hence show that y is increasing when $4 x^{2}+12 x-7<0$
(b) Find the values of x for which y is increasing.

Q9.A curve has equation $y=x^{3} \ln x$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) (i) Find an equation of the tangent to the curve $y=x^{3} \ln x$ at the point on the curve where $x=\mathrm{e}$.
(ii) This tangent intersects the x-axis at the point A. Find the exact value of the x coordinate of the point A.

Q10.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=\left(x^{3}-1\right)^{6}$.
(b) A curve has equation $y=x \ln x$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find an equation of the tangent to the curve $y=x \ln x$ at the point on the curve where $x=e$.

Q11.(a) Given that $x=\frac{1}{\sin \theta}$, use the quotient rule to show that $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-\operatorname{cosec} \theta \cot \theta$.
(b) Use the substitution $x=\operatorname{cosec} \theta$ to find $\int_{\sqrt{2}}^{2} \frac{1}{x^{2} \sqrt{x^{2}-1}} \mathrm{~d} x$, giving your answer to three significant figures.

Q12.The diagram shows part of the graph of $y=\mathrm{e}^{-x^{2}}$

The graph is formed from two convex sections, where the gradient is increasing, and one concave section, where the gradient is decreasing.
(a) Find the values of x for which the graph is concave.
(b) The finite region bounded by the x-axis and the lines $x=0.1$ and $x=0.5$ is shaded.

Use the trapezium rule, with 4 strips, to find an estimate for $\int_{0.1}^{0.5} e^{-x^{2}} d x$ Give your estimate to four decimal places.
(c) Explain with reference to your answer in part (a), why the answer you found in part (b) is an underestimate.
(d) By considering the area of a rectangle, and using your answer to part (b), prove that the shaded area is 0.4 correct to 1 decimal place.

Q13.(a) Given that $y=x^{4} \tan 2 x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Find the gradient of the curve with equation $y=\frac{x^{2}}{x-1}$ at the point where $x=3$.

Q14. A curve has equation $y=4 x \cos 2 x$.
(a) Find an exact equation of the tangent to the curve at the point on the curve where x $=\frac{\pi}{4}$.
(b) The region shaded on the diagram below is bounded by the curve $y=4 x \cos 2 x$ and the x-axis from $x=0$ to $x=\frac{\pi}{4}$.

By using integration by parts, find the exact value of the area of the shaded region.

Q15.(a) Find $\frac{\mathrm{d} y}{\mathrm{dx}}$ when

$$
y=\mathrm{e}^{3 x}+\ln x
$$

(b) (i) Given that $u=\frac{\sin x}{1+\cos x}$, show that $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{1+\cos x}$.
(ii) Hence show that if $y=\ln \left(\frac{\sin x}{1+\cos x}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosec} x$.

M1. (a) (i) $y=x e^{2 x}$

$$
\begin{aligned}
\left(\frac{d y}{d x}=\right) 2 x e^{2 x}+e^{2 x}
\end{aligned} \quad \begin{aligned}
& \\
& \\
& \\
&
\end{aligned} \quad k x e^{2 x}+l e^{2 x} \quad \text { where } k \text { and } l \text { are } 1 s \text { or } 2 s
$$

$$
\left(=e^{2 x}(2 x+1)\right)
$$

(ii)

$$
x=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 e^{2}
$$

> $d y$
> correct substitution of $x=1$ into their $\overline{d x}$ but must have earned M1 in part (i)

CSO (no ISW), must have scored first 4 marks common correct answer: $y=3 e^{2} x-2 e^{2}$
(b) $y=\frac{2 \sin 3 x}{1+\cos 3 x}$

$$
\left(\frac{d y}{d x}=\right) \frac{(1+\cos 3 x) 6 \cos 3 x-2 \sin 3 x(-3 \sin 3 x)}{(1+\cos 3 x)^{2}}
$$

$$
\begin{aligned}
& \frac{ \pm p(1+\cos 3 x) \cos 3 x \pm q \sin 3 x(\sin 3 x)}{(1+\cos 3 x)^{2}} \\
& \quad \text { where } p \text { and } q \text { are rational numbers } \\
& \text { condone poor use/omission of brackets } \\
& \text { PI by further working }
\end{aligned}
$$

$$
=\frac{6 \cos 3 x+6 \cos ^{2} 3 x+6 \sin ^{2} 3 x}{(1+\cos 3 x)^{2}}
$$

this line must be seen in this form (ie in terms of $\cos ^{2} 3 x$ and $\sin ^{2} 3 x$), but allow $\sin ^{2} 3 x$ replaced by $1-\cos ^{2} 3 x$
condone denominator correctly expanded
correct use of $k \sin ^{2} 3 x+k \cos ^{2} 3 x=k$ or $k \sin ^{2} 3 x=k\left(1-\cos ^{2} 3 x\right)$
$=\frac{6 \cos 3 x+6}{(1+\cos 3 x)^{2}}$
$=\frac{6}{1+\cos 3 x}$
CSO
\qquad
note: if degrees used then no marks in (a) and (c)

M2.
(a)

Marking Instructions	AO	Marks	Typical Solution
Uses a correct method for finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ evidence for this includes sight of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and chain rule OR an attempt at implicit or explicit differentiation of a correct Cartesian equation or 'their' equation from part (b)	A01.1a	M1	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=3 t^{2} \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 t \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 t}{3 t^{2}} \\ & \text { When } t=-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{3} \\ & \text { ALT } \\ & y=(x-2)^{\frac{2}{3}}-1 \end{aligned}$
Obtains correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$	A01.1b	A1	$\begin{aligned} & y=(x-2)^{\frac{2}{3}}-1 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2(x-2)^{-\frac{1}{3}}}{3} \\ & \text { When } t=-2, x=-6 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2(-6-2)^{-\frac{1}{3}}}{3}=-\frac{1}{3} \end{aligned}$
Substitutes $t=-2$ (or $x=$ -6) into 'their' equation for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	A01.1a	M1	
Obtains correct simplified gradient of the curve FT 'their' equation for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	A01.1b	A1F	
Eliminates t or makes t the subject in one expression (evidence for this includes one equation with t as the subject or two equations with equal powers of t.)	AO1.1a	M1	$\begin{aligned} & t^{3}=(x-2), t^{2}=(y+1) \\ & t^{6}=(x-2)^{2}, t^{6}=(y+1)^{3} \\ & (x-2)^{2},=(y+1)^{3} \end{aligned}$
Finds a correct Cartesian equation in any form	A01.1b	A1	ALT $\begin{aligned} & t^{3}=(x-2) \\ & t=(x-2)^{\frac{1}{3}} \\ & y=(x-2)^{\frac{2}{3}}-1 \end{aligned}$
Total 6 marks			

M3.

$$
(C=) \frac{2}{e} \text { or } 2 \mathrm{e}^{-1} \text { or } 2\left(\frac{1}{e}\right) \text { or } 2\left(e^{-1}\right)
$$

One of these answers only. Not 0.736 but allow ISW.
(b) $\frac{d}{d x}(2 y)=2 \frac{d y}{d x}$

Product; 2 terms added, one with $\frac{d y}{d x}$;

A1 for each term
$\frac{d}{d x}\left(x^{2}+C\right)=2 x$
B1
$\frac{d y}{d x}=$
Solve their equation correctly for $\frac{d y}{d x}$

$$
\frac{x-e^{2 x} y^{2}}{e^{2 x} y+1}
$$

Condone factor of 2 in both numerator and denominator. ISW

(c) Evaluate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $\left(1, \frac{1}{\mathrm{e}}\right)$
 Substitute $x=1$ and $y=\frac{1}{e}$ into numerator of $\frac{d y}{d x}$; allow one slip

numerator $=1-e^{2} e^{-2}=0 \Rightarrow$ stationary point
Conclusion required; must score full marks in part (b)
Allow 1-1 = 0 or 2-2 $=0$
A1

M4. (a) $y=\ln x$
penalise $+c$ once on 1 (a) or 2 (a)
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}$
(b) $y=(x+1) \ln x$

$$
\begin{array}{r}
\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+1) \times \frac{1}{x}+\ln x \\
\\
\quad \text { product rule }
\end{array}
$$

(c) $y=(x+1) \ln x$

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}+1+\ln x \\
& \quad x=1: \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=1+1=2
\end{aligned}
$$

$$
\text { substitute } x=1 \text { into their } \frac{\mathrm{d} y}{\mathrm{~d} x}
$$

$$
\begin{aligned}
& \text { Grad normal }=-\frac{1}{2} \\
& \text { use of } m_{1} m_{2}=-1
\end{aligned}
$$

 CSO
 $y=-\frac{1}{2}(x-1)$

$$
O E
$$

M5. $8 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 y+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$8 x$ and $4 \rightarrow 0$
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$3 y+3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$

Two terms with one $\frac{\mathrm{d} y}{\mathrm{~d} x}$
M1A1
at $(1,3)$ (gradient) $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3}$
CSO
A1

M6.
(a) $y^{\prime}=\mathrm{e}^{-4 x}(2 x+2)-4 \mathrm{e}^{-4}\left(x^{2}+2 x-2\right)$
$y^{\prime}=A e^{-4 x}(a x+b) \pm B e^{-4}\left(x^{2}+2 x-2\right)$
where A and B are non-zero constants
M1
All correct

$$
\begin{aligned}
& =e^{-4}\left(2 x+2-4 x^{2}-8 x+8\right) \\
& \quad \text { or }-4 x^{2} e^{-4 x}-6 x e^{-4}+10 e^{-4} \\
& =2 e^{-4}\left(5-3 x-2 x^{2}\right) \\
& \text { AG; all correct with no errors, } \\
& 2^{n d} \text { line (OE) must be seen } \\
& \text { Condone incorrect order on final line }
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \\
& y=x^{2} e^{-4 x}+2 x e^{-4 x}-2 e^{-4 x} \\
& y^{\prime}=-4 x^{2} \mathrm{e}^{-4 x}+2 x \mathrm{e}^{-4 x}+2 x .-4 \mathrm{e}^{-4 x}+2 \mathrm{e}^{-4 x}+8 \mathrm{e}^{-4} \\
& A x^{2} e^{-4 x}+B x e^{-4 x}+C x e^{-4 x}+D e^{-4 x}+E e^{-4 x}
\end{aligned}
$$

All correct

$$
\begin{aligned}
& =-4 x^{2} e^{-4 x}-6 x e^{-4 x}+10 e^{-4 x} \\
& =2 e^{-4}\left(5-3 x-2 x^{2}\right)
\end{aligned}
$$

AG; all correct with no errors, 3^{d} line (OE) must be seen
(A1)

(b) $\quad-(2 x+5)(x-1)(=0)$

> OE Attempt at factorisation
> $(\pm 2 x \pm 5)(\pm x \pm 1)$
> or formula with at most one error

M1
$x=\frac{-5}{2}, 1$
Both correct and no errors
SC $x=1$ only scores M1A0

$$
x=1, y=\mathrm{e}^{-4}
$$

For $y=a e^{\text {attempted }}$

Either correct, follow through only from incorrect sign for x
$x=-\frac{5}{2}, y=\mathrm{e}^{10}\left(-\frac{3}{4}\right)$
CSO 2 solutions only
Note: withhold final mark for extra solutions
Note: approximate values only for y can score m1 only

M7.

$$
x^{2}+x y=e^{y}
$$

$2 x+y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$2 x$
B1
Use product rule

> M1A1

RHS
B1
$(-1,0) \quad \frac{d y}{d x}=-1$
CSO
A1

M8.

$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	Marking Instructions	AO	Marks	Typical Solution
	Selects an appropriate routine procedure; evidence of quotient rule or product rule	A01.1a	M1	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2\left(4 x^{2}+7\right)-8 x(2 x+3)}{\left(4 x^{2}+7\right)^{2}}$
(ii)	Obtains correct derivative (no need for simplification)	A01.1b	A1	
	States clearly that $\frac{\mathrm{d} y}{\mathrm{~d} x}>0 \Rightarrow y$ is increasing	AO2.4	R1	y is increasing $\Leftrightarrow \frac{\mathrm{d} y}{\mathrm{dx}}>0$ $\frac{2\left(4 x^{2}+7\right)-8 x(2 x+3)}{2}>0$
	Forms inequality from 'their'	A03.1a	B1	$\begin{gathered} \left(4 x^{2}+7\right)^{2} \\ \left(4 x^{2}+7\right)^{2}>0 \text { for all } x \end{gathered}$

	$\frac{\mathrm{d} y}{\mathrm{~d} x}>0$			$\left\{\begin{array}{l} \therefore 2\left(4 x^{2}+7\right)-8 x(2 x+3)> \\ 0 \\ 8 x^{2}+14-16 x^{2}-24 x>0 \\ 4 x^{2}+12 x-7<0(\text { AG }) \end{array}\right.$
	Deduces numerator must be positive	AO2.2a	R1	
	Considers denominator alone and sets out clear argument to justify given inequality AG Only award this mark if they have a completely correct solution, which is clear, easy to follow and contains no slips	AO2. 1	R1	
(b)	Solves the correct quadratic inequality (accept evidence of factorising, completing the square, use of formula, or correct critical values stated)	A01.1a	M1	$\begin{aligned} & (2 x+7)(2 x-1) \\ & x=-\frac{7}{2}, \frac{1}{2} \end{aligned}$
	Obtains fully correct answer, given as an inequality or using set notation	A01.1b	A1	$\begin{aligned} & -\frac{7}{2}<x<\frac{1}{2} \\ & \text { Or } \\ & x \in\left(-\frac{7}{2}, \frac{1}{2}\right) \\ & \text { Or } \quad x \in\left(x:-\frac{7}{2}<x<\frac{1}{2}\right) \end{aligned}$
	Total 8 marks			

M9.(a) $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)_{x^{3} \times} \frac{1}{x}+3 x^{2} \ln x$

$$
p x^{3} \times \frac{1}{x}+q x^{2} \ln x
$$

$$
\text { where } p \text { and } q \text { are integers }
$$

$$
p=1, q=3
$$

(b) (i) $\left.\frac{d y}{d x}=\right)$

$$
\mathrm{e}^{2}+3 \mathrm{e}^{2} \ln \mathrm{e} \quad\left(=4 \mathrm{e}^{2}\right)
$$

Substituting e for x in their $\frac{d y}{d x}$, but must have scored M1 in (a)

M1

$$
y=\mathrm{e}^{3} \ln \mathrm{e}\left(=\mathrm{e}^{3}\right)
$$

B1

$$
y-\mathrm{e}^{3}=4 \mathrm{e}^{2}(x-\mathrm{e})
$$

OE but must have evaluated In e (twice) for this mark (must be in exact form, but condone numerical evaluation after correct equation)
(ii) $\quad-\mathrm{e}^{3}=4 \mathrm{e}^{2}(x-\mathrm{e})$ or $4 \mathrm{e}^{2} x=3 \mathrm{e}^{3} \quad \mathrm{OE}$

Correctly substituting $y=0$ into a correct tangent equation in (b)(i)

$$
\begin{aligned}
x=\frac{3}{4} & \mathrm{e} \\
& \text { CSO; } \\
& \text { ignore subsequent decimal evaluation }
\end{aligned}
$$

M10.
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=k\left(x^{3}-1\right)^{\phi}$

Where k is an integer or function of x

But note
$\frac{d y}{d x}=k\left(x^{3}-1\right)^{b}+p x^{2}$ MO

Or
$\left(u=x^{3}-1\right) \quad\left(y=u^{6}\right)$
$\frac{d y}{d u}=6 u^{5}$ and $\frac{d u}{d x}=3 x^{2}$ M1
$=6\left(x^{3}-1\right)^{5} \times 3 x^{2}$
Note
$\frac{d y}{d x}=6 \times 3 x^{2}\left(x^{3}-1\right)^{5}+c \quad$ scores M1 A0
(penalise $+c$ in differential once only in paper)

$$
\begin{equation*}
=1+\ln x \tag{ISW}
\end{equation*}
$$

A1
(ii) $\quad(x=\mathrm{e}) \quad y=\mathrm{e}$

PI
Must have replaced In e by 1 Condone $y=2.72$ (AWRT)

B1
$\frac{d y}{d x}=1+\ln e(=2)$
Correct substitution into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
But must have scored M1 in (b)(i)

$$
\begin{gathered}
y-\mathrm{e}=2(x-\mathrm{e}) \text { or } y=2 x-\mathrm{e} \quad \text { OE, ISW } \\
\text { Must have replaced In e by } 1
\end{gathered}
$$

M11.(a) $\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\right) \frac{(\sin \theta \times 0)-1 \times \cos \theta}{\sin ^{2} \theta}$

$$
\text { quotient rule } \frac{ \pm \sin \theta \times k \pm 1 \times \cos \theta}{\sin ^{2} \theta} \text { where } k=0 \text { or } 1
$$

M1
must see the ' 0 ' either in the quotient or in eg $\frac{\mathrm{d} u}{\mathrm{~d} \theta}=0$ etc
A1

$$
=-\frac{\cos \theta}{\sin ^{2} \theta} \quad \text { or }=-\frac{\cos \theta}{\sin \theta \sin \theta}
$$

$=-\operatorname{cosec} \theta \cot \theta$
CSO, AG must see one of the previous expressions
(b) $x=\operatorname{cosec} \theta$

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-\operatorname{cosec} \theta \cot \theta \\
& \quad O E, \text { eg } d x=-\operatorname{cosec} \theta \cot \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { Replacing } \sqrt{\left(\operatorname{cosec}^{2} \theta-1\right)} \text { by } \sqrt{\cot ^{2} \theta} \text {, or better } \\
& \text { at any stage of solution }
\end{aligned}
$$

$$
\begin{aligned}
& \int=\int \frac{-\operatorname{cosec} \theta \cot \theta}{\operatorname{cosec}^{2} \theta \sqrt{\left(\operatorname{cosec}^{2} \theta-1\right)}} \mathrm{d} \theta \\
& \quad \text { all in terms of } \theta \text {, and including their attempt at } d x \text {, } \\
& \text { but condone omission of } d \theta
\end{aligned}
$$

fully correct and must include d θ (at some stage in solution)
A1

$$
\begin{gathered}
\int \frac{-\operatorname{cosec} \theta \cot \theta_{\operatorname{cosec}^{2} \theta \cot \theta}^{(\mathrm{d} \theta)}=\int \frac{-1}{\operatorname{cosec} \theta}(\mathrm{~d} \theta)}{O E \text { eg } \int-\sin \theta(d \theta)}
\end{gathered}
$$

$$
=\cos \theta
$$

$$
\begin{aligned}
x=2, \theta= & 0.524 \text { AWRT } \\
x=\sqrt{2}, \theta= & 0.785 \text { AWRT } \\
& \text { correct change of limits or }(\pm) \cos \theta=\quad(\pm)\left[\sqrt{\left(1-\frac{1}{x^{2}}\right)}\right]_{\sqrt{2}}^{2} \text { OE }
\end{aligned}
$$

$$
0.8660-0.7071
$$

c's $F(0.52)-F(0.79)$
substitution into $\pm \cos \theta$ only or $\left(\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\right)$
m1

$$
=0.159
$$

A1

M12.

	Marking Instructions	AO	Marks	Typical Solution
(a)	Finds $2^{\text {nd }}$ derivative and sets up an inequality	AO3.1a	M1	$\left\{\begin{array}{l} \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x \mathrm{e}^{-x^{2}} \\ \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-2 \mathrm{e}^{-x^{2}}+4 x^{2} \mathrm{e}^{-x^{2}} \\ -2 \mathrm{e}^{-x^{2}}+4 x^{2} \mathrm{e}^{-x^{2}}<0 \\ 4 x^{2}-2<0 \\ -\frac{\sqrt{2}}{2}<x<\frac{\sqrt{2}}{2} \end{array}\right.$
	Obtains correct first derivative	A01.1b	A1	
	Obtains second derivative correct from their first derivative	A01.1b	A1F	
	Deduces correct final inequality (could use set notation)	AO2.2a	A1	
(b)	Uses trapezium rule	A01.1a	M1	$\begin{aligned} -\int_{0.5}^{0 .-e^{x}} \mathrm{~d} x & \approx \frac{0.1}{2}\left(\mathrm{e}^{-0.01}+\mathrm{e}^{-0.25}\right. \\ & +2\left(\mathrm{e}^{-0.04}+\mathrm{e}^{-0.09}+\mathrm{e}^{-0.16}\right) \\ & \approx 0.3616 \end{aligned}$
	Trapezium rule entries all correct	A01.1b	A1	
	Finds correct value	A01.1b	A1	
(c)	References area being completely within concave section So...	AO2.4	E1	$[0.1,0.5] \subset\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$ \therefore area is completely within concave section
	Trapezia all fall completely underneath the curve therefore underestimate (only award this mark if previous E1 has been awarded)	AO2.4	E1	Hence trapezia lie below curve and give an underestimate for the area
(d)	Uses suitable rectangle to obtain over-estimate	A03.1a	B1	Using a rectangle with the left hand edge the same

Page 32

Explains that this rectangle lies above the curve	AO2.4	E1	height as the curve will produce an over-estimate Area of rectangle $=$
Constructs rigorous mathematical argument about accuracy, which leads to required result	AO2.1	R1	$0.4 \times \mathrm{e}^{-0.01}=0.396 \ldots$
Only award if they have a completely correct solution, which is clear, easy to follow and contains no slips.	$\therefore 0.36<A<0.40$		

M13.(a) $\quad\left(y=x^{4} \tan 2 x\right)$

$$
\begin{aligned}
& \left(\frac{d y}{d x}=\right) 4 x^{3} \tan 2 x+x^{4} 2 \mathrm{sec}^{2} 2 x \\
& 4 x^{3} \text { tan } 2 x+A x^{4} \sec ^{2} k x \\
& O E \text { where } A \text { is a non-zero constant. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A1 for } k=2 \\
& \text { may have }(\sec 2 x)^{2} \\
& \text { or } \frac{1}{\cos ^{2} 2 x}
\end{aligned}
$$

A1 all correct
ISW if attempt to simplify is incorrect.
(b) $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{ \pm 2 x(x-1) \pm 1\left(x^{2}\right)}{(x-1)^{2}}$

Use of the quotient rule

$$
\frac{2 x(x-1)-1\left(x^{2}\right)}{(x-1)^{2}}
$$

$$
\left(=\frac{x^{2}-2 x}{(x-1)^{2}}\right)
$$

Simplification not required
$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{3}{4}$ or 0.75 OE
Obtained from correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$

M14.(a) $y=4 x \cos 2 x$

$$
\begin{aligned}
& \left(\frac{d y}{d x}=\right) \text { 4cos } 2 x-4 x(2) \sin 2 x \\
& \quad \begin{array}{l}
\text { anything reducible to } A \cos 2 x+B x \sin 2 x \text { where } A \text { and } B \\
\text { are non-zero integers }
\end{array}
\end{aligned}
$$

gradient of the tangent OE, all correct
$A \cos \frac{2 \pi}{4}+B \times \frac{\pi}{4} \sin \frac{2 \pi}{4}$
substituting $\frac{\pi}{4}$ into candidate's derived function

$$
=-2 \pi
$$

$$
\text { must have }=-2 \pi \text { using correct } \frac{\mathrm{d} y}{\mathrm{~d} x}
$$

A1
(b)

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
\int_{0}^{\frac{\pi}{4}} 4 x \cos 2 x \mathrm{~d} x
\end{array}\right) \\
\begin{array}{l}
\frac{\mathrm{d} v}{\mathrm{~d} x}= \\
u=A x \\
\cos 2 x
\end{array} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x}=A \quad \begin{array}{l}
v=B \sin \\
2 x
\end{array}
\end{array}\right\}
$$

all 4 terms in this form seen or used

$$
A=4 \text { and } B=\frac{1}{2} \text { or } A=1 \text { and } B=2 \text {, etc }
$$

$$
\begin{aligned}
& =\left[4 x \frac{1}{2} \sin 2 x\right]_{(0)}^{\left(\frac{\pi}{4}\right)}-\int_{(0)}^{\left(\frac{\pi}{4}\right)} 4 \times \frac{1}{2} \sin 2 x(\mathrm{~d} x) \\
& \text { correct substitution of candidate's terms into integration } \\
& \text { by parts formula condone missing limits }
\end{aligned}
$$

$$
\begin{aligned}
& =\left[4 x \frac{1}{2} \sin 2 x\right]_{(0)}^{\left.-\frac{\pi}{4}\right)}-[-\cos 2 x]_{(0)}^{\left(\frac{\pi}{4}\right)} \\
& \text { candidate's second integration completed correctly } \\
& \text { FT on one error including coefficient condone missing limits }
\end{aligned}
$$

OE, exact value

M15.(a) $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 3 \mathrm{e}^{3 x}+\frac{1}{x}$
B1 for one term correct
B1

B1 all correct
B1
(b) (i) $\left(\frac{\mathrm{d} u}{\mathrm{~d} x}=\right) \frac{ \pm \cos x(1+\cos x) \pm \sin x(\sin x)}{(1+\cos x)^{2}}$
clear attempt at quotient / product rule

$$
\frac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^{2}}
$$

any correct form seen
A1

$$
\begin{aligned}
& =\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}}=\frac{\cos x+1}{(1+\cos x)^{2}}=\frac{1}{1+\cos x} \\
& \text { AG be convinced } \\
& \text { correct use of brackets and correct notation used } \\
& \text { throughout (eg A0 if cos } x^{2} \text { etc seen) }
\end{aligned}
$$

A1cso
(ii) $\left(\frac{d y}{d x}=\right) \frac{1+\cos x}{\sin x} \times \frac{1}{1+\cos x}$ OE correct use of chain rule

M1

$$
=\frac{1}{\sin x}
$$

$=\operatorname{cosec} x$
AG, must see $=\frac{1}{\sin x}$ and no errors seen; condone incorrect use of brackets only if penalised in part (b)(i)

