P3 Integration Revision

Class:

Date:

Time:	178 minutes
Marks:	150 marks

Comments:

Q1.(a) Given that $u=2^{\mathrm{x}}$, write down an expression for $\frac{\mathrm{d} u}{\mathrm{~d} x}$
(b) Find the exact value of $\int_{0}^{1} 2^{x} \sqrt{3+2^{x}} \mathrm{dx}$

Fully justify your answer.

Q2. (a) Express $\overline{(3-2 x)(1-x)^{2}}$ in the form $\frac{A}{3-2 x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}}$.
(b) Solve the differential equation
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \sqrt{y}}{(3-2 x)(1-x)^{2}}$
where $y=0$ when $x=0$, expressing your answer in the form

$$
y^{p}=q \ln [\mathrm{f}(x)]+\frac{x}{1-x}
$$

where p and q are constants.

Q3. (a) Using integration by parts, find $\int x \sin (2 x-1) \mathrm{d} x$
(b) Use the substitution $u=2 x-1$ to find $\int \frac{x^{2}}{2 x-1} \mathrm{~d} x$, giving your answer in terms of x.

Q4. Use the substitution $u=1+2 \tan x$ to find $\int \frac{1}{(1+2 \tan x)^{2} \cos ^{2} x} \mathrm{~d} x$

Q5.Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2} x \sin 3 x
$$

given that $y=1$ when $x=\frac{\pi}{6}$. Give your answer in the form $y=\frac{9}{\mathrm{f}(x)}$.

Q6.
(a) Find $\int \frac{1}{3+2 x} \mathrm{~d} x$.
(2)
(b) By using integration by parts, find $\int x \sin \frac{x}{2} \mathrm{~d} x$.
(Total 6 marks)

Q7.(a) (i) Express $\frac{5 x-6}{x(x-3)}$ in the form $\frac{A}{x}+\frac{B}{x-3}$.
(ii) Find $\int \frac{5 x-6}{x(x-3)} \mathrm{d} x$.
(b) (i) Given that

$$
4 x^{3}+5 x-2=(2 x+1)\left(2 x^{2}+p x+q\right)+r
$$

find the values of the constants p, q and r.
(ii) Find $\int \frac{4 x^{3}+5 x-2}{2 x+1} \mathrm{~d} x$.

Q8.Use the substitution $u=x^{4}+2$ to find the value of $\int_{0}^{1} \frac{x^{7}}{\left(x^{4}+2\right)^{2}} \mathrm{~d} x$, giving your answer in the form $p \ln q+r$, where p, q and r are rational numbers.

Q9.(a) Express $\frac{2 x+3}{4 x^{2}-1}$ in the form $\frac{A}{2 x-1}+\frac{B}{2 x+1}$, where A and B are integers.
(b) Express $\frac{12 x^{3}-7 x-6}{4 x^{2}-1}$ in the form $C x+\frac{D(2 x+3)}{4 x^{2}-1}$, where C and D are integers.
(c) Evaluate $\int_{1}^{2} \frac{12 x^{3}-7 x-6}{4 x^{2}-1} \mathrm{~d} x$, giving your answer in the form $p+\ln q$, where p and q are rational numbers.

Q10.(a) (i) Express $\frac{5-8 x}{(2+x)(1-3 x)}$ in the form $\frac{A}{2+x}+\frac{B}{1-3 x}$, where A and B are integers.
(ii) Hence show that $\int_{-1}^{0} \frac{5-8 x}{(2+x)(1-3 x)} \mathrm{d} x=p \ln 2$, where p is rational.
(b) (i) Given that $\frac{9-18 x-6 x^{2}}{2-5 x-3 x^{2}}$ can be written as $C+\frac{5-8 x}{2-5 x-3 x^{2}}$, find the value of C.
(ii) Hence find the exact value of the area of the region bounded by the curve
$y=\frac{9-18 x-6 x^{2}}{2-5 x-3 x^{2}}$, the x-axis and the lines $x=-1$ and $x=0$.
You may assume that $y>0$ when $-1 \leq x \leq 0$.

Q11.(a) Given that $x=\frac{1}{\sin \theta}$, use the quotient rule to show that $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-\operatorname{cosec} \theta \cot \theta$.
(b) Use the substitution $x=\operatorname{cosec} \theta$ to find $\int_{\sqrt{2}}^{2} \frac{1}{x^{2} \sqrt{x^{2}-1}} \mathrm{~d} x$, giving your answer to three significant figures.

Q12.(a) Given that $y=4 x^{3}-6 x+1$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Hence find $\int_{2}^{3} \frac{2 x^{2}-1}{4 x^{3}-6 x+1} \mathrm{~d} x$, giving your answer in the form $p \ln q$, where p and q are rational numbers.

Q13.(a) Show that

$$
\int_{0}^{\ln 2} \mathrm{e}^{1-2 x} \mathrm{~d} x=\frac{3}{8} \mathrm{e}
$$

(b) Use the substitution $u=\tan x$ to find the exact value of

$$
\int_{0}^{\frac{\pi}{4}} \sec ^{4} x \sqrt{\tan x} \mathrm{~d} x
$$

Q14.(a) Find $\int x \sqrt{x^{2}+3} \mathrm{~d} x$.
(b) Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x \sqrt{x^{2}+3}}{\mathrm{e}^{2 y}}
$$

given that $y=0$ when $x=1$. Give your answer in the form $y=\mathrm{f}(x)$.
(Total 9 marks)

Q15.The height $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{8 \sin 2 t, f}{3 \sqrt{x}}$ a column of water in a fountain display satisfies the differential equation , where t is the time in seconds after the display begins.
(a) Solve the differential equation, given that initially the column of water has zero height.
Express your answer in the form $x=\mathrm{f}(t)$
(b) Find the maximum height of the column of water, giving your answer to the nearest cm.

Q16.(a) Use the trapezium rule with five ordinates (four strips) to find an approximate value for

$$
\int_{1}^{5} \frac{1}{x^{2}+1} \mathrm{~d} x
$$

giving your answer to three significant figures.
(b) (i) Find $\int\left(x^{-\frac{3}{2}}+6 x^{\frac{1}{2}}\right) \mathrm{d} x$, giving the coefficient of each term in its simplest form.
(ii) Hence find the value of $\int_{1}^{4}\left(x^{-\frac{3}{2}}+6 x^{\frac{1}{2}}\right) \mathrm{d} x$.

Q17. $\int_{1}^{2} x^{3} \ln (2 x) \mathrm{d} x$ can be written in the form $p \ln 2+q$, where p and q are rational numbers.
Find p and q.
(Total 5 marks)

M1.
(a)

Marking Instructions	AO	Marks	Typical Solution
States the correct derivative	AO1.1b	B1	$2^{\mathrm{x} / \ln 2}$
Selects an appropriate method for integrating, which could lead to a correct exact solution (this could be indicated by an attempt at a substitution or attempting to write the integrand in the form $\left.\mathrm{f}^{\prime}(x) \mathrm{f}(x)^{n}\right)$	AO3.1a	M1	Let $u=2^{x}$
Then $\frac{\mathrm{d} u}{\mathrm{dx}}=2^{x} \ln 2$			

M2.
(a) $1=A(1-x)^{2}+B(1-x)(3-2 x)+C(3-2 x)$

Attempt to clear fractions

$$
\left.\begin{array}{lll}
x=1 & x=\frac{3}{2} & x=0 \\
C=1 & 1=A\left(-\frac{1}{2}\right)^{2} & 1=A+3 B+3 C
\end{array}\right\}
$$

Use any two (or three) values of x to set up two (or three) equations

$$
\begin{gathered}
A=4 \begin{array}{c}
B=-2 \quad C= \\
\text { Two values correct }
\end{array}
\end{gathered}
$$

All values correct

Alternative

$$
\begin{equation*}
1=A(1-x)^{2}+B(1-x)(3-2 x)+C(3-2 x) \tag{M1}
\end{equation*}
$$

$$
\begin{aligned}
& 1=A+3 B+3 C \\
& 0=-2 A-5 B-2 C \\
& \quad \text { Set up three simultaneous equations }
\end{aligned}
$$

$$
\begin{array}{rl}
A=4 & B=-2 \quad C=1 \\
& \text { All values correct }
\end{array}
$$

(A1)
(b)

$$
\int \frac{1}{2 \sqrt{y}} \mathrm{~d} y=\int \frac{4}{3-2 x}-\frac{2}{1-x}+\frac{1}{(1-x)^{2}} \mathrm{~d} x
$$

Separate using partial fractions; correct notation; condone missing integral signs but $d y$ and $d x$ must be in correct place.
ft on their A, B, C and on each integral.
B1ft

$$
\int \frac{1}{2 \sqrt{y}} \mathrm{~d} y=\sqrt{y}=
$$

$$
O E \quad \int \frac{k}{\sqrt{y}} d y=2 k \sqrt{y} \text { is } B 1
$$

Condone missing brackets on one In integral.

$$
+2 \ln (1-x)
$$

$$
+\frac{1}{1-x}(+C)
$$

Condone omission of $+C$
$x=0 \quad y=0 \Rightarrow 0=-2 \ln 3+0+1+C$
Use $(0,0)$ to find C. Must get to $C=\ldots .$.

$$
C=2 \ln 3-1
$$

Correct C found from correct equation.
C must be exact, in any form but not decimal.

$$
\sqrt{y}=2 \ln \left(\frac{3-3 x}{3-2 x}\right)+\frac{1}{1-x}-1
$$

Correct use of rules of logs to progress towards requested form of answer. C must be of the form r Ins $+t$

$$
y^{\frac{1}{2}}=2 \ln \left(\frac{3-3 x}{3-2 x}\right)+\frac{x}{1-x}
$$

OE
CSO condone BO for separation

A1
9
[13]

M3.
(a) $\int x \sin (2 x-1) \mathrm{d} x$
$u=x \quad \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sin (2 x-1)$
$\int \sin f(x), \frac{d}{d x}(x)$ attempted
$\frac{\mathrm{d} u}{\mathrm{~d} x}=1 \quad v=-\frac{1}{2} \cos (2 x-1)$

All correct - condone omission of brackets

$$
(\sqrt{=})-\frac{x}{2} \cos (2 x-1)-\int-\frac{1}{2} \cos (2 x-1)(\mathrm{d} x)
$$

correct substitution of their terms into parts

$$
\begin{aligned}
& =-\frac{x}{2} \cos (2 x-1)+\frac{1}{2} \int \cos (2 x-1)(\mathrm{d} x) \\
& \quad \text { All correct }- \text { condone omission of brackets }
\end{aligned}
$$

$=-\frac{x}{2} \cos (2 x-1)+\frac{1}{4} \sin (2 x-1)+c$
CSO condone missing $+c$ and $d x$ Condone missing brackets around $2 x-1$ if recovered in final line ISW
(b) $\quad u=2 x-1$

$$
{ }^{\prime} \mathrm{d} u=2 \mathrm{~d} x^{\prime}
$$

OE
$\int \frac{x^{2}}{2 x-1} \mathrm{~d} x=\int \frac{(u+1)^{2}}{4 u} \frac{\mathrm{~d} u}{2}$
All in terms of u
m1
All correct

PI from later working

$$
\begin{aligned}
& =\left(\frac{1}{8}\right) \int \frac{u^{2}+2 u+1}{u} \mathrm{~d} u \\
& =\left(\frac{1}{8}\right) \int u+2+\frac{1}{2} \mathrm{~d} u
\end{aligned}
$$

$=\left(\frac{1}{8}\right)\left[\frac{u^{2}}{2}+2 u+\ln u\right]$
or $\left(\frac{1}{8}\right)\left[\frac{(u+2)^{2}}{2}+i n u\right]$
$=\frac{1}{8}\left[\frac{(2 x-1)^{2}}{2}+2(2 x-1)+\ln (2 x-1)\right]+c$
or $=\frac{1}{8}\left[\frac{(2 x+1)^{2}}{2}+\ln (2 x-1)\right]+c$
CSO condone missing $+c$ only ISW
\qquad
6

M4. $\quad \int \frac{1}{\cos ^{2} x(1+2 \tan x)^{2}} \mathrm{~d} x$

$$
\begin{aligned}
& u=1+2 \tan x \\
& \left(\frac{\mathrm{~d} u}{\mathrm{~d} x}=\right) 2 \sec ^{2} x \mathrm{OE} \\
& \\
& \text { condone }\left(\frac{d u}{d x}=\right) \operatorname{asec}^{2} x \text { where a is a constant }
\end{aligned}
$$

$\int=\int \frac{\mathrm{d} u}{2 u^{2}}$

$$
\int \frac{k}{u^{2}}(d u), \text { where } k \text { is a constant }
$$

correct, or $\frac{1}{2} \int u^{-2}(d u)$
$=\frac{1}{2} \frac{u^{-1}}{-1}$
correct integral of their expression but must have scored M1 m1
$=-\frac{1}{2 u}$
$=-\frac{1}{2(1+2 \tan x)}(+c)$
CSO, no ISW

A1

M5. $\int \frac{\mathrm{d} y}{y^{2}}=\int_{x \sin 3 x \mathrm{~d} x}$
Correct separation and notation; condone missing integral signs

B1
$\int \frac{\mathrm{d} y}{y^{2}}=-\frac{1}{y}$

$$
\int_{x} \sin 3 x \mathrm{~d} x=x\left(-\frac{1}{3} \cos 3 x\right)
$$

$$
\begin{aligned}
& u=x \quad \frac{d v}{d x}=\sin 3 x \\
& \text { Use parts } \frac{d u}{d x}=1 \quad v=k \cos 3 x \quad \text { with correct substitution into }
\end{aligned}
$$ formula

$$
-\int-\frac{1}{3} \cos 3
$$

$$
\begin{array}{r}
\frac{1}{3} x \cos 3 x \mathrm{~d} x+\frac{\frac{1}{9} \sin 3 x}{C A O}
\end{array}
$$

$$
\begin{aligned}
&-\frac{1}{y}=-\frac{1}{3} x \cos 3 x+\frac{1}{9} \sin 3 x \\
&-1=-\frac{1}{3} \times \frac{\pi}{6} \cos \left(\frac{\pi}{2}\right)+\frac{1}{9} \sin \left(\frac{\pi}{2}\right)+C \\
& \text { Use } x=\frac{\pi}{6} y=1 \quad \text { to find } C
\end{aligned}
$$

$C=-\frac{10}{9}$

$$
C A O
$$

$-\frac{1}{y}=-\frac{1}{9}(3 x \cos 3 x \mathrm{~d} x-\sin 3 x+10)$

$$
\text { And invert to }-y=-\frac{9}{(\ldots . .)}
$$

$$
y=\frac{9}{3 x \cos 3 x-\sin 3 x+10}
$$

CSO, condone first B1 not given

Second M1 finding C; substitute $x=\frac{\pi}{6} \quad y=1$ into $f(y)=p x \cos 3 x+q \sin 3 x+C$ and evaluate using radians.

Must calculate a value of C.
$m 1$ for reaching form $\frac{k}{y}=\frac{1}{9}(P x \cos 3 x Q \sin 3 x+R)$ where P and Q are ± 3 or $\pm \frac{1}{3}$ or ± 1 and inverting to $\pm \frac{y}{k}=\frac{9}{(P x \cos 3 x+Q \sin 3 x+R)}$

M6.
(a) (i) $\int \frac{1}{3+2 x} d x$

$$
=k \ln (3+2 x)
$$

Where k is a rational number
$=\frac{1}{2} \ln (3+2 x)+c$
Or
if substitution $u=3+2 x, d u=2 d x$
$\int=\int \frac{1}{u} \frac{d u}{2}=k m u$ M1
$=\frac{1}{2} \ln (3+2 x)+c$
(b) $u=x \quad \mathrm{~d} v=\sin \frac{x}{2}$

$$
\int \sin \frac{x}{2}(d x)=k \cos \frac{x}{2}, \frac{d}{d x}(x)=1
$$

where k is a constant

$$
\mathrm{d} u=1 \quad v=-2 \cos \frac{x}{2}
$$

All correct

$$
\begin{aligned}
\int=-2 x \cos \frac{x}{2}-\int-2 \cos & \frac{x}{2}(\mathrm{~d} x) \\
& \begin{array}{l}
\text { Correct substitution of their terms into parts } \\
\text { formula (watch signs carefully) }
\end{array}
\end{aligned}
$$

$$
=-2 x \cos \frac{x}{2}+4 \sin \frac{x}{2}+c
$$

$$
C A O
$$

M7.(a) (i) $\quad 5 x-6=A(x-3)+B x$

Multiply by denominator and use two values of x.

$$
\begin{array}{lc}
x=0 & x=3 \\
A=2 & B=3
\end{array}
$$

Alternative: equate coefficients

$$
\begin{aligned}
-6= & -3 A \quad 5=A+B \\
& \text { Set up and solve simultaneous equations for values } \\
& \text { of } A \text { and } B .
\end{aligned}
$$

$$
\begin{equation*}
A=2 \quad B=3 \tag{M1}
\end{equation*}
$$

(ii) $\left(\int \frac{2}{x}+\frac{3}{x-3} d x=\right)_{2 \ln x}$ their $A \ln x$

$$
+3 \ln (x-3)(+C)
$$

their $B \ln (x-3)$ and no other terms; condone $B \ln x-3$
(b) (i)

$$
\begin{aligned}
& \frac{2 x^{2}-x+3}{2 x+1} \begin{array}{l}
4 x^{3}+5 x-2 \\
4 x^{3}+\frac{2 x^{2}}{-2 x^{2}}+5 x \\
-2 x^{2}-\frac{x}{6 x}-2 \\
6 x+\frac{3}{-5}
\end{array}
\end{aligned}
$$

Division as far as $2 x^{2}+p x+q$ with $p \neq 0, q \neq 0, P I$

$$
\begin{aligned}
& p=-1 \\
& \text { Pl by } 2 x^{2}-x+q \text { seen }
\end{aligned}
$$

$$
\begin{aligned}
& q=3 \\
& \quad \text { Pl by } 2 x^{2}-x+3 \text { seen }
\end{aligned}
$$

and must state $p=-1, q=3, r=-5$ explicitly or write out full correct RHS expression

A1

Alternative 1:

$$
\begin{align*}
& 4 x^{3}+5 x-2=4 x^{3}+(2+2 p) x^{2}+(p+2 q) x+q+r \\
& 2+2 p=0 \\
& \quad \text { Clear attempt to equate coefficients, Pl by } p=-1 \tag{M1}
\end{align*}
$$

$$
\begin{align*}
& p+2 q=5 \\
& q+r=-2 \\
& p=-1 \tag{A1}
\end{align*}
$$

$$
q=3 \quad r=-5
$$

(A1A1)

Alternative 2:

$$
4 x^{3}+5 x-2=(2 x+1)\left(2 x^{2}+p x+q\right)+r
$$

$$
\begin{array}{r}
x=-\frac{1}{2} \quad 4 \times\left(-\frac{1}{2}\right)^{3}+5\left(-\frac{1}{2}\right)+2=r \\
x=-\frac{1}{2} \text { used to find a value for } r \tag{M1}
\end{array}
$$

$$
r=-5
$$

$$
p=-1, q=3
$$

(A1A1)
(ii) $\left(\frac{4 x^{3}+5 x-2}{2 x+1}=\right) 2 x^{2}+p x+q+\frac{r}{2 x+1}$

$$
\begin{aligned}
& \frac{2}{3} x^{3}-\frac{1}{2} x^{2}+3 x+k \ln (2 x+1)(+C) \\
& \quad \text { ft on } p \text { and } q
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{3} x^{3}-\frac{1}{2} x^{2}+3 x-\frac{5}{2} \ln (2 x+1)(+C) \\
& \text { CSO }
\end{aligned}
$$

M8. $u=x^{4}+2$
$\frac{\mathrm{~d} u}{\mathrm{~d} x}=4 x^{3}$

$$
\text { or } d u=4 x^{3} d x
$$

$$
\int \frac{x^{7}}{\left(x^{4}+2\right)^{2}} \mathrm{~d} x \text { 技 } \frac{k(u-2)}{u^{2}} \mathrm{~d} u \text { or } \int \frac{k(u-2)^{\frac{7}{4}}}{u^{2}} \frac{\mathrm{~d} u}{(u-2)^{\frac{3}{4}}}
$$

Either expression all in terms of u including replacing $d x$, but condone omission of du
$=\left(\frac{1}{4}\right) \int \frac{1}{u}-\frac{2}{u^{2}} \mathrm{~d} u$
$k \int a u^{-1}+b u^{-2} d u$, where k, a, b are constants
m1
$=\left(\frac{1}{4}\right)\left[\ln u+\frac{2}{u}\right]$
Must have seen du on an earlier line where every term is a term in u

$$
\begin{aligned}
& =\left(\int=\left(\frac{1}{4}\right)\left[\ln u+\frac{2}{u}\right]_{2}^{3}\right) \\
& \\
& \quad\left(\left(\frac{1}{4}\right)\left[\ln \left(x^{4}+2\right)+\frac{2}{\left(x^{4}+2\right)}\right]_{0}^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=\left(\frac{1}{4}\right)\left[\left(\ln 3+\frac{2}{3}\right)-(\ln 2+1)\right] \\
& \text { Dependent on previous A1 } \\
& \begin{array}{l}
\text { orrect change of limits, correct substitution and } F(3)-F(2) \\
\\
\\
\text { correct replacement of } u \text {, correct substitution and } F(1)-F(0)
\end{array}
\end{aligned}
$$

OE in exact form
A1

M9.(a) $\quad 2 x+3=A(2 x+1)+B(2 x-1)$

$$
x=\frac{1}{2} \quad x=-\frac{1}{2}
$$

Use two values of x to find A and B

$$
\begin{array}{r}
A=2 \quad B=-1 \\
\quad \text { Both }
\end{array}
$$

Alternative; equating coefficients

$$
2 x+3=A(2 x+1)+B(2 x-1)
$$

```
\(x\) term \(\quad 2=2 A+2 B\)
constant \(3=A-B\)
Set up simultaneous equations and solve.
```

$$
\begin{array}{r}
A=2 \quad B=-1 \\
\text { Both }
\end{array}
$$

(A1)
(3)

Alternative; cover up rule

$$
\begin{gathered}
x=\frac{1}{2} \quad A=\frac{2 \times \frac{1}{2}+3}{2 \times \frac{1}{2}+1} \quad\left(=\frac{4}{2}\right) \\
x=\frac{1}{2} \text { and } x=-\frac{1}{2} \text { used to find } A \text { and } B \\
\begin{aligned}
x=-\frac{1}{2} \quad \begin{array}{rl}
B & =\frac{2 \times\left(-\frac{1}{2}\right)+3}{2 \times\left(-\frac{1}{2}\right)-1} \quad\left(=\frac{2}{-2}\right) \\
S C & N M S
\end{array} \\
A=2 \quad B=-1 \\
A \text { and } B \text { both correct } 3 / 3 \\
\text { One of } A \text { or } B \text { correct } 1 / 3
\end{aligned}
\end{gathered}
$$

Condone poor algebra for M1 if continues correctly.
(b) $\quad 4 x ^ { 2 } - 1 \longdiv { 1 2 x ^ { 3 } - 7 x - 6 }$

$$
\begin{aligned}
12 x^{3}- & \underline{3 x} \\
-4 x &
\end{aligned}
$$

Complete division leading to values for C and D

$$
C=3
$$

$D=-2$

A1

$C=3, D=-2$ stated or written in expression.
SC B1
$C=3, D$ not found or wrong;
$D=-2, C$ not found or wrong.

Alternative

$\frac{12 x^{3}-7 x-6}{4 x^{2}-1}=\frac{12 x^{3}-3 x-4 x-6}{4 x^{2}-1}=3 x-\frac{2(2 x+3)}{4 x^{2}-1}$
$C=3$
(A1)
$D=-2$
$C=3, D=-2$ stated or written in expression. SC B1
$C=3, D$ not found or wrong;
$D=-2, C$ not found or wrong.

Alternative

$$
\begin{align*}
& 12 x^{3}-7 x-6=4 C x^{3}-C x+2 D x+3 D \\
& \text { Complete method for } C \text { and } D \tag{M1}
\end{align*}
$$

$C=3$

$$
D=-2
$$

(A1)

$C=3, D=-2$ stated or written in expression.
SC B1
$C=3, D$ not found or wrong;
$D=-2, C$ not found or wrong.
(3)

Alternative

$x=0 \quad x=1$
$6=-3 D \quad-\frac{1}{3}=C+\frac{5}{3} D$
Use two values of x to set up simultaneous equations
(M1)
$C=3$
(A1)
$D=-2$
$C=3, D=-2$ stated or written in expression.
SC B1
$C=3, D$ not found or wrong;
$D=-2, C$ not found or wrong.

Complete division for M1; obtain a value for $C(C x)$ and a remainder $a x+b$
(c) $\int 3 x-2\left(\frac{2}{2 x-1}-\frac{1}{2 x+1}\right) d x$

Use parts (a) and (b) to obtain integrable form
$3 \frac{x^{2}}{2}$

$$
\text { ft on } C
$$

A1ft

$$
-2\left(\ln (2 x-1)-\frac{1}{2} \ln (2 x+1)\right)
$$

Both correct; ft on A, B and D
Condone missing brackets

$$
\frac{3}{2}(4-1)-2\left(\left(\ln 3-\frac{1}{2} \ln 5\right)-\left(\ln 1-\frac{1}{2} \ln 3\right)\right)
$$

Correct substitution of limits
m1

$$
\begin{array}{r}
\frac{9}{2}-3 \ln 3+\ln 5=\frac{9}{2}+\ln \left(\frac{5}{27}\right) \\
p=\frac{\frac{9}{2}}{p} \quad q=\frac{5}{27}
\end{array}
$$

$$
\text { Form } \int C x+\left(\frac{P}{2 x-1}+\frac{Q}{2 x+1}\right) \text { using candidate's } P, Q, C \text { for } M 1 .
$$

Condone missing $d x$.

$$
\int C x \mathrm{~d} x=C \frac{x^{2}}{2} \text { for A1ft }
$$

ISW extra terms eg $\frac{12}{4 x^{2}-1}$ for first three terms only; max $3 / 5$.
Candidate's C; must have a value.
$\int \frac{4 x+6}{4 x^{2}-1} \mathrm{~d} x=\int \frac{4 x}{4 x^{2}-1}+\frac{6}{4 x^{2}-1} d x$ is an integrable form,
as $\int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right)$ is in the formula book, but they must try to integrate to show they know this, or use partial fractions again with $\frac{6}{4 x^{2}-1}=\frac{3}{2 x-1}-\frac{3}{2 x+1}$ for M1.

Substitute limits into $C^{\frac{x^{2}}{2}}+m \ln (2 x-1)+n \ln (2 x+1)$, or equivalent, for $m 1$; substitution must be completely correct.

Condone $\frac{9}{2}-\ln \left(\frac{27}{5}\right)$ for A1.

M10.(a) (i) $5-8 x=A(1-3 x)+B(2+x)$

$$
x=-2 \quad x=\frac{1}{3}
$$

Two values of x used to find values for A and B

$$
A=3 \quad B=1
$$

Alternative:

$$
\begin{equation*}
5-8 x=A(1-3 x)+B(2+x) \tag{M1}
\end{equation*}
$$

$$
5=A+2 B
$$

$$
-8=-3 A+B
$$

Set up simultaneous equations and solve.

$$
\begin{equation*}
A=3 B=1 \tag{m1}
\end{equation*}
$$

$$
\begin{align*}
\int_{-1}^{0} \frac{3}{2+x}+\frac{1}{1-3 x} d x & =3 \ln (2+x)-\frac{1}{3} \ln (1-3 x) \tag{ii}\\
a \ln (2+x) & +b \ln (1-3 x) \text { where } a \text { and } b \text { are constants }
\end{align*}
$$

$$
=\left(3 \ln 2-\frac{1}{3} \ln 1\right)-\left(3 \ln 1-\frac{1}{3} \ln 4\right)
$$

$$
f(0)-f(-1) \text { used }
$$

$$
\begin{aligned}
& =\frac{\frac{11}{3}}{} \ln 2 \\
& \quad f t\left(A+\frac{2}{3} B\right) \ln 2
\end{aligned}
$$

(b) (i) $\quad(C=) 2$

B1
(ii) $\int \frac{9-18 x-6 x^{2}}{2-5 x-3 x^{2}} \mathrm{~d} x=\int C \mathrm{~d} x+\int \frac{5-8 x}{2-5 x-3 x^{2}} \mathrm{~d} x$

Seen or implied.
Allow $\pm C+\int \frac{5-8 x}{2-5 x-3 x^{2}} \mathrm{dx}$

$$
\begin{aligned}
& \int_{-1}^{0} \frac{9-18 x-6 x^{2}}{2-5 x-3 x^{2}} \mathrm{~d} x=2+\frac{11}{3} \ln 2 \\
& \quad \text { Accept } 2+3 \ln 2+\frac{1}{3} \ln 4 \\
& \text { ft } 2+\text { candidate's answer to part (a)(ii) if exact. }
\end{aligned}
$$

M11.(a) $\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\right) \frac{(\sin \theta \times 0)-1 \times \cos \theta}{\sin ^{2} \theta}$

$$
\text { quotient rule } \frac{ \pm \sin \theta \times k \pm 1 \times \cos \theta}{\sin ^{2} \theta} \text { where } k=0 \text { or } 1
$$

$$
\begin{aligned}
& =-\frac{\cos \theta}{\sin ^{2} \theta} \text { or }=-\frac{\cos \theta}{\sin \theta \sin \theta} \\
& \text { or equivalent }
\end{aligned}
$$

(b) $x=\operatorname{cosec} \theta$

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-\operatorname{cosec} \theta \cot \theta \\
& O E, \text { eg } d x=-\operatorname{cosec} \theta \cot \theta d \theta
\end{aligned}
$$

B1

Replacing $\sqrt{\left(\operatorname{cosec}^{2} \theta-1\right)}$ by $\sqrt{\cot ^{2} \theta}$, or better
at any stage of solution
B1
$\int=\int \frac{-\operatorname{cosec} \theta \cot \theta}{\operatorname{cosec}^{2} \theta \sqrt{\left(\operatorname{cosec}^{2} \theta-1\right)}} \mathrm{d} \theta$
all in terms of θ, and including their attempt at $d x$, but condone omission of $d \theta$
fully correct and must include d θ (at some stage in solution)

$$
\begin{gathered}
\int \frac{-\operatorname{cosec} \theta \cot \theta}{\operatorname{cosec}^{2} \theta \cot \theta(\mathrm{~d} \theta)}=\int \frac{-1}{\operatorname{cosec} \theta}(\mathrm{~d} \theta) \\
O E \text { eg } \int-\sin \theta(d \theta)
\end{gathered}
$$

$$
=\cos \theta
$$

$$
\begin{aligned}
& x=2, \theta=0.524 \text { AWRT } \\
& x=\sqrt{2}, \theta=0.785 \text { AWRT }
\end{aligned}
$$

$$
\text { correct change of limits or }(\pm) \cos \theta=(\pm)\left[\sqrt{\left(1-\frac{1}{x^{2}}\right)}\right]_{\sqrt{2}} O E
$$

$$
\text { substitution into } \pm \cos \theta \text { only or }\left(\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\right)
$$

$=0.159$

$$
\text { M12.(a) }\left(\frac{\mathrm{d} y}{\mathrm{dx} x}=\right) 12 x^{2}-6 \text { do not ISW }
$$

(b) $\int_{2}^{3} \frac{2 x^{2}-1}{4 x^{3}-6 x+1} \mathrm{~d} x=\left[\frac{1}{6} \ln \left(4 x^{3}-6 x+1\right)\right]_{(2)}^{(3)}$ $k \ln \left(4 x^{3}-6 x+1\right), k$ is a constant

$$
k=\frac{1}{6}
$$

$$
\begin{aligned}
& =\frac{1}{6} \ln \left(4 \times 3^{3}-6 \times 3+1\right) \\
& -\frac{1}{6} \ln \left(4 \times 2^{3}-6 \times 2+1\right) \\
& \quad \begin{array}{l}
\text { correct substitution in } F(3)-F(2) . \\
\quad \text { condone poor use or lack of brackets. }
\end{array}
\end{aligned}
$$

m1

$$
\begin{aligned}
=\frac{1}{6} \ln 91- & \frac{1}{6} \ln 21 \\
& k \ln 91-k \ln 21 \\
& \text { only follow through on their } k
\end{aligned}
$$

A1F

$$
=\frac{1}{6} \ln \frac{91}{21} \quad \text { or } \quad\left(=\frac{1}{6} \ln \frac{13}{3}\right)
$$

or if using the substitution
$u=4 x^{3}-6 x+1$
$\int=k \int \frac{\mathrm{~d} u}{u}$
M1
$=\frac{1}{6} \ln u$
A1
then, either change limits to 21 and 91 m1 then A1F A1 as scheme or changing back to ' x ', then m1 A1F A1 as scheme

M13.(a) $\quad \int_{\mathrm{e}^{1-2 x}} \mathrm{~d} x=k \mathrm{e}^{1-2 x}$ or $\mathrm{e}\left(k \mathrm{e}^{-2 \mathrm{x}}\right)$
where k is a rational number

$$
\begin{aligned}
\int_{0}^{\operatorname{lon} 2} \mathrm{e}^{1-2 x} \mathrm{~d} x= & -\left.\frac{1}{2} \mathrm{e}^{1-2 x}\right|_{0} ^{\ln 2} \text { or } \mathrm{e}\left[-\frac{1}{2} \mathrm{e}^{-2 x}\right]_{0}^{\operatorname{lon} 2} \\
& \text { correct integration } \\
& \text { condone missing limits }
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2} \mathrm{e}^{1-2 \ln 2}--\frac{1}{2} \mathrm{e}^{1-2(0)} \\
& \quad \text { correct (no decimals) }
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2}\left(\frac{1}{4} \mathrm{e}\right)+\frac{1}{2} \mathrm{e} \\
& \quad \text { eliminating In } \\
& =\frac{3}{8} \mathrm{e}
\end{aligned}
$$

AG, be convinced
(b) $u=\tan x$

$$
\frac{\mathrm{d} u}{\mathrm{dx}}=\sec ^{2} x
$$

PI below, condone $d u=\sec ^{2} x d x$

Replacing $\mathrm{d} x$ by $\frac{1}{\sec ^{2} x}(\mathrm{~d} u)$ in integral

$$
\text { or } \frac{1}{1+u^{2}}(\mathrm{~d} u)
$$

$\sec ^{2} x=1+u^{2}$
PI below

this could be gained by changing u to $\tan x$ after the integration and using $x=0$ and $\quad x=\frac{\pi}{4}$

B1
$\int_{0}^{\frac{\pi}{4}} \sec ^{4} x \sqrt{\tan x} \mathrm{~d} x$

$$
=\int\left(1+u^{2}\right) \sqrt{u}(\mathrm{~d} u) \text { or } \int\left(1+u^{2}\right)^{2} \sqrt{u} \frac{(\mathrm{~d} u)}{1+u^{2}}
$$

all in terms of u including replacing $d x$ all correct, condone omission of du

$$
=\begin{aligned}
& \int\left(u^{\frac{5}{2}}+u^{\frac{1}{2}}\right)(\mathrm{d} u) \\
& \text { must be in this form }
\end{aligned}
$$

$$
=\frac{2}{7} u^{\frac{7}{2}}+\frac{2}{3} u^{\frac{3}{2}}
$$ accept correct unsimplified form

$$
=\frac{20}{21} \quad C A O
$$

M14.(a) $\int x\left(x^{2}+3\right)^{\frac{1}{2}} \mathrm{~d} x=p\left(x^{2}+3\right)^{\frac{3}{2}}$
By inspection or substitution

$$
=\frac{1}{3}\left(x^{2}+3\right)^{\frac{3}{2}}(+C)
$$

(b) $\int \mathrm{e}^{2 y} \mathrm{~d} y=\int x \sqrt{x^{2}+3} \mathrm{~d} x$

Correct separation and notation
Condone missing integral signs

$$
=\frac{1}{2} \mathrm{e}^{2 y}
$$

$$
\begin{aligned}
= & \frac{1}{3}\left(x^{2}+3\right)^{\frac{3}{2}} \\
& +C \\
& \text { Equate to result from (a) with constant. }
\end{aligned}
$$

$$
\frac{1}{2}=\frac{1}{3} \times 4^{\frac{3}{2}}+C
$$

Use $(1,0)$ to find constant.

$$
C=-\frac{13}{6} \quad C A O
$$

$$
2 y=\ln \left(\frac{2}{3}\left(x^{2}+3\right)^{\frac{3}{2}}-\frac{13}{3}\right)
$$

Solve for y, taking logs correctly.

$$
y=\frac{1}{2} \ln \left(\frac{2}{3}\left(x^{2}+3\right)^{\frac{3}{2}}-\frac{13}{3}\right)
$$

M15.

M16.(a) $\quad h=1$
PI

$$
\begin{aligned}
& \mathrm{f}(x)=\frac{1}{x^{2}+1} \\
& \mathrm{I} \approx \frac{h}{2}\{\mathrm{f}(1)+\mathrm{f}(5)+2[f(2)+\mathrm{f}(3)+\mathrm{f}(4)]\} \\
& \quad \frac{h}{2}\{f(1)+f(5)+2[f(2)+f(3)+f(4)]\}
\end{aligned}
$$

OE summing of areas of the four 'trapezia'...

M1

$$
\begin{aligned}
& \frac{h}{2} \text { with }\{\ldots\}=\frac{1}{2}+\frac{1}{26}+2\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{17}\right) \\
& =0.5+0.03(84 \ldots)+2[0.2+0.1+0.05(88 \ldots)] \\
& =0.538(46 \ldots)+2[0.358(82 \ldots)]=1.256(108 \ldots) \\
& \quad \text { OE Accept } 2 d p \text { (rounded or truncated) for non-terminating } \\
& \text { decs. equiv. }
\end{aligned}
$$

($\quad 0.628054 \ldots=\frac{694}{1105}=0.628$ (to 3sf)
CAO Must be 0.628
SC for those who use 5 strips, max possible is BOM1A1AO
(b) (i)

$$
\int\left(x^{-\frac{3}{2}}+6 x^{\frac{1}{2}}\right) \mathrm{d} x=\frac{x^{-\frac{1}{2}}}{-1 / 2}+\frac{6 x^{\frac{3}{2}}}{3 / 2}(+c)
$$

One term correct (even unsimplified)

Both terms correct (even unsimplified)

$$
\begin{aligned}
& =-2 x^{-0.5}+4 x^{1.5}(+c) \\
& \quad \text { Must be simplified }
\end{aligned}
$$

(ii) $\int_{1}^{4}\left(x^{-\frac{3}{2}}+6 x^{\frac{1}{2}}\right) \mathrm{d} x=\left[-2(4-.5)+4\left(41^{1.5}\right)\right]-\left[-2(1-. .5)+4\left(1^{.5}\right)\right]$

Attempt to calculate $F(4)-F(1)$ where $F(x)$ follows integration and is not just the integrand

$$
\begin{aligned}
& =(-1+32)-(-2+4)=29 \\
& \quad \text { Since 'Hence' NMS scores } 0 / 2
\end{aligned}
$$

A1

M17.

Marking Instructions	AO	Marks	Typical Solution
Selects a method of integration, which could lead to a correct solution. Evidence of integration by parts OR an attempt at integration by inspection.	A03.1a	M1	$\begin{array}{ll} u=\ln 2 x, & \frac{\mathrm{~d} v}{\mathrm{~d} x}=x^{3} \\ \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x} ; & v=\frac{x^{4}}{4} \\ {\left[\frac{x 4}{4} \ln (2 x)\right]_{1}^{2}-\int_{1}^{2} \frac{x^{3}}{4} \mathrm{~d} x} \end{array}$
Applies integration by parts formula correctly OR correctly differentiates an expression of the form $A x^{4} \ln 2 x$	A01.1b	A1	$\left[\begin{array}{l} {\left[\frac{x 4}{4} \ln (2 x)-\frac{x^{4}}{16}\right]_{1}^{2}} \\ =\left(\frac{2^{4}}{4} \ln (4)-\frac{2^{4}}{16}\right)-\left(\frac{1}{4} \ln (2)-\frac{1}{16}\right) \end{array}\right.$
Obtains correct integral, condone missing limits.	A01.1b	A1	

Substitutes correct limits into 'their' integral	A01.1a	M1	$\frac{31}{4} \ln 2-\frac{15}{16}$
Obtains correct p and q FT use of incorrect integral provided both M1 marks have been awarded	A01.1b	A1F	$\text { so } p=\frac{31}{4} \quad q=-\frac{15}{16}$ ALT $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{4} \ln 2 x\right)=4 x^{3} \ln 2 x+x^{4} \cdot \frac{1}{x} \\ & \therefore \int_{1}^{2} x^{3} \ln 2 x \mathrm{~d} x=\left[\frac{1}{4}\left(x^{4} \ln 2 x-\frac{x^{4}}{4}\right)\right]_{1}^{2} \\ & =\left(\frac{2^{4}}{4} \ln (4)-\frac{2^{4}}{16}\right)-\left(\frac{1}{4} \ln (2)-\frac{1}{16}\right)^{2} \\ & \frac{31}{4} \ln 2-\frac{15}{16} \\ & p=\frac{31}{4} \quad q=-\frac{15}{16} \end{aligned}$
Total 5 marks			

