P3 Binomial, Partial Fractions and Numerical Methods

Revision Questions

Name:

Class:

Date:
Time: 128 minutes
Marks: 91 marks
Comments:

1. The equation $x^{3}-2 x-2=0$ has one real root.
(i) Show by calculation that this root lies between $x=1$ and $x=2$.
(ii) Prove that, if a sequence of values given by the iterative formula

$$
x_{n+1}=\frac{2 x_{n}^{3}+2}{3 x_{n}^{2}-2}
$$

converges, then it converges to this root.
(iii) Use this iterative formula to calculate the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
2. (i) By sketching a suitable pair of graphs, show that the equation

$$
2-x=\ln x
$$

has only one root.
(ii) Verify by calculation that this root lies between 1.4 and 1.7.
(iii) Show that this root also satisfies the equation

$$
x=\frac{1}{3}(4+x-2 \ln x) .
$$

(iv) Use the iterative formula

$$
x_{n+1}=\frac{1}{3}\left(4+x_{n}-2 \ln x_{n}\right),
$$

with initial value $x_{1}=1.5$, to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
3.

In the diagram, $A B C D$ is a rectangle with $A B=3 a$ and $A D=a$. A circular arc, with centre A and radius r, joins points M and N on $A B$ and $C D$ respectively. The angle MAN is x radians. The perimeter of the sector $A M N$ is equal to half the perimeter of the rectangle.
(i) Show that x satisfies the equation

$$
\sin x=\frac{1}{4}(2+x) .
$$

(ii) This equation has only one root in the interval $0<x<\frac{1}{2} \pi$ Use the iterative formula

$$
x_{n+1}=\sin ^{-1}\left(\frac{2+x_{n}}{4}\right)
$$

with initial value $x_{1}=0.8$, to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
4. (i) By sketching a suitable pair of graphs, show that the equation

$$
2 \cot x=1+\mathrm{e}^{x},
$$

where x is in radians, has only one root in the interval $0<x<\frac{1}{2} \pi$.
(ii) Verify by calculation that this root lies between 0.5 and 1.0.
(iii) Show that this root also satisfies the equation

$$
x=\tan ^{-1}\left(\frac{2}{1+\mathrm{e}^{x}}\right) .
$$

(iv) Use the iterative formula

$$
x_{n+1}=\tan ^{-1}\left(\frac{2}{1+\mathrm{e}^{x_{n}}}\right),
$$

with initial value $x_{1}=0.7$, to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
5. The equation $x^{3}-x-3=0$ has one real root, α.
(i) Show that α lies between 1 and 2 .

Two iterative formulae derived from this equation are as follows:

$$
\begin{align*}
& x_{n+1}=x_{n}^{3}-3 \tag{A}\\
& x_{n+1}=\left(x_{n}+3\right)^{\frac{1}{3}} \tag{B}
\end{align*}
$$

Each formula is used with initial value $x_{1}=1.5$.
(ii) Show that one of these formulae produces a sequence which fails to converge, and use the other formula to calculate α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
6. When $(1+2 x)(1+a x)^{\frac{2}{3}}$, where a is a constant, is expanded in ascending powers of x, the coefficient of the term in x is zero.
(i) Find the value of a.
(ii) When a has this value, find the term in x^{3} in the expansion of $(1+2 x)(1+a x)^{\frac{2}{3}}$, simplifying the coefficient.
7. Expand $(1+x) \sqrt{ }(1-2 x)$ in ascending powers of x, up to and including the term in x^{2}, simplifying the coefficients.
8. Expand $(1+4 x)^{-\frac{1}{2}}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.
9. Expand $(2+3 x)^{-2}$ in ascending powers of x, up to and including the term in x^{2}, simplifying the coefficients.
10. (i) Express $\frac{3 x^{2}+x}{(x+2)\left(x^{2}+1\right)}$ in partial fractions.
(ii) Hence obtain the expansion of $\frac{3 x^{2}+x}{(x+2)\left(x^{2}+1\right)}$ in ascending powers of x, up to and including the term in x^{3}.
11. (i) Express $\frac{10}{(2-x)\left(1+x^{2}\right)}$ in partial fractions.
(ii) Hence, given that $|x|<1$, obtain the expansion of $\frac{10}{(2-x)\left(1+x^{2}\right)}$ in ascending powers of x, up to and including the term in x^{3}, simplifying the coefficients.
12. (i) Simplify $(\sqrt{ }(1+x)+\sqrt{ }(1-x))(\sqrt{ }(1+x)-\sqrt{ }(1-x))$, showing your working, and deduce that

$$
\frac{1}{\sqrt{(1+x)+\sqrt{(1-x)}}}=\frac{\sqrt{(1+x)-\sqrt{(1-x)}}}{2 x}
$$

(ii) Using this result, or otherwise, obtain the expansion of

$$
\frac{1}{\sqrt{(1+x)+\sqrt{(}(1-x)}}
$$

in ascending powers of x, up to and including the term in x^{2}.
13. (i) Express $\frac{2-x+8 x^{2}}{(1-x)(1+2 x)(2+x)}$ in partial fractions.
(ii) Hence obtain the expansion of $\frac{2-x+8 x^{2}}{(1-x)(1+2 x)(2+x)}$ in ascending powers of x, up to and including the term in x^{2}.

1. (i) Compare signs of $x^{3}-2 x-2$ when $x=1$ and $x=2$, or equivalent

Complete the argument with correct calculations A1 2
(ii) State or imply the equation $x=\left(2 x^{3}+2\right) /\left(3 x^{2}-2\right) \mathrm{B} 1$

Rearrange this in the form $x^{3}-2 x-2=0$, or work vice versa $\quad \mathrm{B} 1$
(iii) Use the iterative formula correctly at least once with $x_{n}>0 \quad$ M1

Obtain final answer 1.77 A1
Show sufficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in the interval $(1.765,1.775)$ A1
2. (i) Make a recognisable sketch of an appropriate graph, e.g. $y=\ln x$

Sketch an appropriate second graph, e.g. $y=2-x$, correctly and justify the given statement

B1 2
(ii) Consider sign of $2-x-\ln x$ when $x=1.4$ and $x=1.7$, or equivalent

Complete the argument with correct calculations A1 2
(iii) Rearrange the equation $x=\frac{1}{3}(4+x-2 \ln x)$ as $2-x=\ln x$, or vice versa $\mathrm{B} 1 \quad 1$
(iv) Use the iterative formula correctly at least once M1

Obtain final answer 1.56 A1
Show sufficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in the interval $(1.555,1.565) \quad \mathrm{A} 1$ A1 3
[8]
3.
(i) State or imply $r=a \operatorname{cosec} x$, or equivalent

B1
Using perimeters, obtain a correct equation in x, e.g. $2 a \operatorname{cosec} x+$ $a x \operatorname{cosec} x=4 a$, or $2 r+r x=4 a \quad$ B1

Deduce the given form of equation correctly
B1
3
(ii) Use the iterative formula correctly at least once M1

Obtain final answer 0.76 A1
Show sufficient iterations to 4 d.p. to justify its accuracy to 2 d.p.,
or show that there is a sign change in the value of $\sin x \frac{1}{4}(2+x)$
in the interval $(0.755,0.765) \quad$ A1 3
4. (i) Make recognizable sketch of a relevant graph, e.g. $y=2 \cot x \quad$ B1

Sketch an appropriate second graph, e.g. $y=1+\mathrm{e}^{x}$ correctly and justify the given statement B1 2
(ii) Consider sign of $2 \cot x-1-\mathrm{e}^{x}$ at $x=0.5$ and $x=1$, or equivalent

Complete the argument with appropriate calculations
(iii) Show that the given equation is equivalent to $x=\tan ^{-1}\left(\frac{2}{1+\mathrm{e}^{x}}\right)$, or vice versa B 1 1
(iv) Use the iterative formula correctly at least once M1

Obtain final answer 0.61 A1
Show sufficient stations to justify its accuracy to 2 d.p., or show there is a sign change in the interval $(0.605,0.615) \quad \mathrm{A} 1 \quad 3$
5. (i) Consider sign of $x^{3}-x-3$, or equivalent M1

Justify the given statement A1 2
(ii) Apply an iterative formula correctly at least once, with initial value $x_{1}=1.5 \quad$ M1

Show that (A) fails to converge A1
Show that (B) converges A1
Obtain final answer 1.67 A1
Show sufficient iterations to justify its accuracy to 2 d.p., or show there is a sign change in the interval $(1.665,1.675) \quad \mathrm{A} 1$
6. (i) State correct first two terms of the expansion of $(1+a x)^{\frac{2}{3}}$, i.e. $1+\frac{2}{3} a x$

Form an expression for the coefficient of x in the expansion of $(1+2 x)$ $(1+a x)^{\frac{2}{3}}$ and equate it to zero

Obtain $a=-3$
A1
3
 or

$$
\mathrm{B} 1 \sqrt{ }+\mathrm{B} 1 \sqrt{ }
$$

Carry out multiplication by $1+2 x$ obtaining two terms in x^{3}

7. EITHER:

State correct unsimplified first two terms of the expansion of $\sqrt{(1-2 x)}$, e.g. $1+\frac{1}{2}(-2 x) \quad$ B1

State correct unsimplified term in x^{2}, e.g. $\frac{1}{2} \cdot\left(\frac{1}{2}-1\right) \cdot(-2 x)^{2} / 2!\quad$ B1
Obtain sufficient terms of the product of $(1+x)$ and the expansion up to the term in x^{2} of $\sqrt{(1-2 x)} \quad$ M1

Obtain final answer $1-\frac{3}{2} x^{2}$ A1
[The B marks are not earned by versions with symbolic binomial coefficients
such as $\binom{\frac{1}{2}}{1}$.]
[SR: An attempt to rewrite $(1+x) \sqrt{(1-2 x)}$ as $\sqrt{\left(1-3 x^{2}\right)}$ earns M1 A1 and the subsequent expansion $1-\frac{3}{2} x^{2}$ gets M1 A1.]

OR:

Differentiate expression and evaluate $f(0)$ and $f^{\prime}(0)$, having used the product rule M1

Obtain $f(0)=1$ and $f^{\prime}(0)=0$ correctly A1
Obtain $f^{\prime \prime}(0)=-3$ correctly A1

Obtain final answer $1-\frac{3}{2} x^{2}$, with no errors seen A1

8. EITHER:

Obtain correct unsimplified version of the x or x^{2} or x^{3} term M1
State correct first two terms $1-2 x$ A1
Obtain next two terms $6 x^{2}-20 x^{3} \quad \mathrm{~A} 1+\mathrm{A} 1$
[The M mark is not earned by versions with unexpanded
binomial coefficients, e.g. $\binom{-\frac{1}{2}}{2}$.]

OR:
Differentiate expression and evaluate $f(0)$ and $f^{\prime}(0)$,
where $\mathrm{f}^{\prime}(x)=k(1+4 x)^{-\frac{3}{2}} \quad$ M1
State correct first two terms $1-2 x \quad$ A1
Obtain next two terms $6 x^{2}-20 x^{3} \quad \mathrm{~A} 1+\mathrm{A} 1 \quad 4$

9. EITHER:

Obtain correct unsimplified version of the x or x^{2} term in the expansion of $(2+3 x)^{-2}$ or $\left(1+\frac{3}{2} x\right)^{-2} \mathrm{M} 1$

State correct first term $\frac{1}{4}$
B1

Obtain the next two terms $-\frac{3}{4} x+\frac{27}{16} x^{2} \quad \mathrm{~A} 1+\mathrm{A} 1$
[The M mark is not earned by versions with symbolic binomial coefficient such as $\binom{-2}{1}$.]
[The M Mark is earned if division of 1 by the expansion of $(2+3 x)^{2}$, with a correct unsimplified x or x^{2} term, reached a partial quotient of $a+b x$.]
[Accept exact decimal equivalents of fractions.]
[SR : Answer given as $\frac{1}{4}\left(1-3 x+\frac{27}{4} x^{2}\right)$ can
earn B1M1A1 (if $\frac{1}{4}$ seen but then omitted, give M1A1).]
[SR : Solutions involving $k\left(1+\frac{3}{2} x\right)^{-2}$, where $k=2,4$ or $\frac{1}{2}$, can
earn M1 and A1 $\sqrt{ }$ for correctly simplifying both the terms
in x and x^{2}.]

OR:
Differentiate expression and evaluate $f(0)$ and $f^{\prime}(0)$, where
$\mathrm{f}^{\prime}(x)=k(2+3 x)^{-3} \quad$ M1
State correct first term $\frac{1}{4}$
B1

Obtain the next two terms $-\frac{3}{4} x+\frac{27}{16} x^{2} \quad \mathrm{~A} 1+\mathrm{A} 1$
10. (i) State or imply partial fractions are of the form $\frac{A}{x+2}+\frac{B x+C}{x^{2}+1} \quad$ B1

Use any relevant method to obtain a constant M1
Obtain $A=2 \mathrm{~A} 1$
Obtain $B=1 \mathrm{Al}$
Obtain $C=-1 \quad$ A1 5
(ii) Use correct method to obtain the first two terms of the expansion of $(2+x)^{-1}$, or $\left(1+\frac{1}{2} x\right)^{-1}$, or $\left(1+x^{2}\right)^{-1}$ M1*

Obtain complete unsimplified expansions of the fractions, e.g. 2.
$\frac{1}{2}\left(1-\frac{1}{2} x+\frac{1}{4} x^{2}-\frac{1}{8} x^{3}\right) ;(x-1)\left(1-x^{2}\right) \quad \mathrm{A} 1 \sqrt{ }+\mathrm{A} 1 \sqrt{ }$
Carry out multiplication of expansion of $\left(1+x^{2}\right)^{-1}$ by $(x-1) \quad$ M1 (dep *)
Obtain answer $\frac{1}{2} x+\frac{5}{4} x^{2}-\frac{9}{8} x^{3} \quad$ A1 $\quad 5$
[Binomial coefficients involving -1 , such as $\binom{-1}{1}$, are not sufficient for the first M1.]
[f.t. is on A, B, C.]
[Apply this scheme to attempts to expand $\left(3 x^{2}+x\right)(x+2)^{-1}\left(1+x^{2}\right)^{-1}$, giving M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]
11. (i) State or imply partial fraction are of the form $\frac{A}{2-x}+\frac{B x+C}{1+x^{2}} \quad$ B1

Use any relevant method to obtain a constant M1
Obtain one of the value $A=2, B=2, C=4 \quad$ A1
Obtain a second value A1
Obtain the third value A1 5
(ii) Use correct method to obtain the first two terms of the expansion of $(2-x)^{-1}$ or $\left(1-\frac{1}{2} x\right)^{-1}$ or $\left(1+x^{2}\right)^{-1}$ M1

Obtain any correct unsimplified expansion of the partial fraction up to the terms in x^{3}, e.g. $(2 x+4)\left(1+(-1) x^{2}\right)$ (deduct A1 for each incorrect expansion) A1 $\sqrt{ }+$ A1 $\sqrt{ }$

Carry out multiplication of expansion of $\left(1+x^{2}\right)^{-1}$ by $(2 x+4) \quad$ M1
Obtain answer $5+\frac{5}{2} x-\frac{15}{4} x^{2}-\frac{15}{8} x^{3} \quad$ A1 5
[Binomial coefficients involving -1 , e.g. $\binom{-1}{1}$, are not sufficient for the M1 mark. The f.t. is on A, B, C.]
[In the case of an attempt to expand $10(2-x)^{-1}\left(1+x^{2}\right)^{-1}$, give M1A1A1 for the expansion, M1 for multiplying out fully, and A1 for the final answer.]
[Allow the use of Maclaurin, giving M1A1 $\sqrt{ }$ for $f(0)=5$ and $f^{\prime}(0)$ $=\frac{5}{2}, \mathrm{~A} 1 \sqrt{ }$ for $\mathrm{f}^{\prime}(0)=-\frac{15}{2}$, $\mathrm{A} 1 \sqrt{ }$ for $\mathrm{f}^{\prime \prime}(0)=-\frac{45}{4}$, and A 1 for obtaining the correct final answer (f.t. is on A, B, C if used.]
12. (i) Simplify product and obtain $(1+x)-(1-x)$ B1

Complete the proof of the given result with no errors seen
B1
(ii) Use correct method to obtain the first two terms of the expansion of $\sqrt{1+x}$ or $\sqrt{1-x}$ M1

EITHER:

Obtain any correct unsimplified expansion of the numerator of the RHS of the identity up to the terms in x^{3}

Obtain final answer with constant term $\frac{1}{2}$
Obtain term $\frac{1}{16} x^{2}$ and no term in x
OR:
Obtain any correct unsimplified expansion of the denominator of the LHS of the identity up to the terms in x^{2}
Obtain final answer with constant term $\frac{1}{2}$
Obtain terms $\frac{1}{16} x^{2}$ and no term in x
[Symbolic binomial coefficients are not sufficient for the M1. Allow two correct separate expansions to earn the first A1 if the context is clear and appropriate.]
[Allow the use of Maclaurin, giving
M1A1 for $\mathrm{f}(0)=\frac{1}{2}$ and $\mathrm{f}^{\prime}(0)=0, \mathrm{~A} 1$ for $\mathrm{f}^{\prime}(0)=\frac{1}{8}$, and A 1
for obtaining the correct final answer.]
13. (i) State or imply the form $\frac{A}{1-x}+\frac{B}{1+2 x}+\frac{C}{2+x} \quad$ B1

Use any relevant method to determine a constant M1
Obtain $A=1, B=2$ and $C=-4 \quad \mathrm{~A} 1+\mathrm{A} 1+\mathrm{A} 15$
(ii) Use correct method to obtain the first two terms of the expansion of $(1-x)^{-1},(1+2 x)^{-1},(2+x)^{-1}$ or $\left(1+\frac{1}{2} x\right)^{-1} \quad$ M1

Obtain complete unsimplified expansions
up to x^{2} of each partial fraction $\quad \mathrm{A} 1 \sqrt{ }+\mathrm{A} 1 \sqrt{ }+\mathrm{A} 1 \sqrt{ }$
Combine expansions and obtain answer $1-2 x+\frac{17}{2} x^{2}$
[Binomial coefficients such as $\binom{-1}{2}$ are not sufficient for the M1.
The f.t. is on A, B, C.]
[Apply this scheme to attempts to expand $\left(2-x+8 x^{2}\right)(1-x)^{-1}(1+2 x)^{-1}$ $(2+x)^{-1}$, giving M1A1A1A1 for the expansions, and A1 for the final answer.]
[Allow Maclaurin, giving M1A1 $\sqrt{ } \mathrm{A} 1 \sqrt{ }$ for $\mathrm{f}(0)=1$ and $\mathrm{f}^{\prime}(0)=-2$, A1 $\sqrt{ }$ for $\mathrm{f}^{\prime \prime}(0)=17$ and A1 for the final answer (f.t. is on $\left.A, B, C\right)$.]

