P3 Vectors

Revision Questions

Name:

Class:

Date:
\qquad
\qquad
\qquad
Time: 132 minutes
Marks: 96 marks

Comments:

1. With respect to the origin O, the points A and B have position vectors given by

$$
\overrightarrow{O A}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}
$$

The line l has vector equation $\mathbf{r}=4 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}+s(\mathbf{i}+2 \mathbf{j}+\mathbf{k})$.
(i) Prove that the line l does not intersect the line through A and B.
(ii) Find the equation of the plane containing l and the point A, giving your answer in the form $a x+b y+c \mathrm{z}=d$.
2. The straight line l passes through the points A and B with position vectors

$$
2 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \quad \text { and } \quad \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}
$$

respectively. This line intersects the plane p with equation $x-2 y+2 z=6$ at the point C.
(i) Find the position vector of C.
(ii) Find the acute angle between l and p.
(iii) Show that the perpendicular distance from A to p is equal to 2 .
3. The points A and B have position vectors, relative to the origin O, given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
-1 \\
3 \\
5
\end{array}\right) \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{c}
3 \\
-1 \\
-4
\end{array}\right)
$$

The line l passes through A and is parallel to $O B$. The point N is the foot of the perpendicular from B to l.
(i) State a vector equation for the line l.
(ii) Find the position vector of N and show that $B N=3$.
(iii) Find the equation of the plane containing A, B and N, giving your answer in the form $a x+b y+c z=d$.
4. The line l has equation $\mathbf{r}=4 \mathbf{i}+2 \mathbf{j}-\mathbf{k}+t(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$. It is given that l lies in the plane with equation $2 x+b y+c z=1$, where b and c are constants.
(i) Find the values of b and c.
(ii) The point P has position vector $2 \mathbf{j}+4 \mathbf{k}$. Show that the perpendicular distance from P to l is $\sqrt{5}$.
5. Two planes have equations $2 x-y-3 z=7$ and $x+2 y+2 z=0$.
(i) Find the acute angle between the planes.
(ii) Find a vector equation for their line of intersection.
6. The line l has equation $\mathbf{r}=\mathbf{j}+\mathbf{k}+s(\mathbf{i}-2 \mathbf{j}+\mathbf{k})$. The plane p has equation $x+2 y+3 z=5$.
(i) Show that the line l lies in the plane p.
(ii) A second plane is perpendicular to the plane p, parallel to the line l and contains the point with position vector $2 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$. Find the equation of this plane, giving your answer in the form $a x+b y+c z=d$.
7.

The diagram shows a set of rectangular axes $O x, O y$ and $O z$, and three points A, B and C with position vectors $\overrightarrow{O A}=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right), \overrightarrow{O B}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $\overrightarrow{O C}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$.
(i) Find the equation of the plane $A B C$, giving your answer in the form $a x+b y+c z=d$.
(ii) Calculate the acute angle between the planes $A B C$ and $O A B$.
8. The points A and B have position vectors, relative to the origin O, given by

$$
\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}
$$

The line l has vector equation

$$
\mathbf{r}=(1-2 t) \mathbf{i}+(5+t) \mathbf{j}+(2-t) \mathbf{k} .
$$

(i) Show that l does not intersect the line passing through A and B.
(ii) The point P lies on l and is such that angle $P A B$ is equal to 60°. Given that the position vector of P is $(1-2 t) \mathbf{i}+(5+t) \mathbf{j}+(2-t) \mathbf{k}$, show that $3 t^{2}+7 t+2=0$. Hence find the only possible position vector of P.
9. The straight line l has equation $\mathbf{r}=\mathbf{i}+6 \mathbf{j}-3 \mathbf{k}+s(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})$. The plane p has equation $(\mathbf{r}-3 \mathbf{i}) \cdot(2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k})=0$. The line l intersects the plane p at the point A.
(i) Find the position vector of A.
(ii) Find the acute angle between l and p.
(iii) Find a vector equation for the line which lies in p, passes through A and is perpendicular to l.

1. (i) State or imply a direction vector for $A B$ is $-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$, or equivalent

EITHER:

State equation of $A B$ is $\mathbf{r}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+t(-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k})$, or equivalent
Equate at least two pairs of components of $A B$ and l and solve for s or for t

Obtain correct answer for s or for t , e.g. $s=0$ or $t=-2 ; s=-\frac{5}{3}$ or $t=-\frac{1}{3}$ or $s=5$ or $t=3$

Verify that all three pairs of equations are not satisfied and that the lines fail to intersect

OR:

State a Cartesian equation for $A B$, e.g. $\frac{x-2}{-1}=\frac{y-2}{2}=\frac{z-1}{2}$, and for l,
e.g. $\frac{x-4}{1}=\frac{y+2}{2}=\frac{z-2}{1}$

Solve a pair of equations, e.g. in x and y, for one unknown
Obtain one unknown, e.g. $x=4$ or $y=-2$
Obtain corresponding remaining values, e.g. of z, and show lines do not intersect

OR:
Form a relevant triple scalar product,
e.g. $(2 \mathbf{i}-4 \mathbf{j}+\mathbf{k}) .((-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}) \times(\mathbf{i}+2 \mathbf{j}+\mathbf{k}))$

Attempt to use correct method of evaluation
Obtain at least two correct simplified terms of the three terms of the complete expansion of the triple product or of the corresponding determinant

Obtain correct non-zero value, e.g. -20 , and state that the lines do not intersect

(ii) EITHER:

Obtain a vector parallel to the plane and not parallel to l, e.g. $2 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$

Use scalar product to obtain an equation in a, b and c, e.g. $a+2 b+c=0$

Form a second relevant equation, e.g. $2 a-4 b+c=0$ and solve for one ratio, e.g. $a: b$

Obtain final answer $a: b: c=6: 1:-8$
Use coordinates of a relevant point and values of a, b and c in
general equation and find $d$$\quad$ M1
Obtain answer $6 x+y-8 z=6$, or equivalent

OR:

Obtain a vector parallel to the plane and not parallel to l, e.g. $2 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$

Obtain a second relevant vector parallel to the plane and attempt to calculate their vector product, e.g. $(\mathbf{i}+2 \mathbf{j}+\mathbf{k}) \times(2 \mathbf{i}-4 \mathbf{j}+\mathbf{k})$

Obtain two correct components of the product A1
Obtain correct answer, e.g. $6 \mathbf{i}+\mathbf{j}-8 \mathbf{k}$
Substitute coordinates of a relevant point in $6 x+y-8 z=d$, or equivalent, to find d

Obtain answer $6 x+y-8 z=6$, or equivalent

OR:

Obtain a vector parallel to the plane and not parallel to l, e.g. $2 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$
Obtain a second relevant vector parallel to the plane and correctly form a 2-parameter equation for the plane,
e.g. $\mathbf{r}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}-4 \mathbf{j}+\mathbf{k})+\mu(\mathbf{i}+2 \mathbf{j}+\mathbf{k})$

State 3 correct equations in x, y, z, λ and μ
Eliminate λ and μ
Obtain equation in any correct form A1
Obtain answer $6 x+y-8 z=6$, or equivalent

OR:

Using the coordinates of A and two points on l, state three simultaneous equations in a, b, c and d, e.g. $2 a+2 b+c=d, 4 a-2 b+2 c=d$ and $5 a+3 c=d$

Solve and find one ratio, e.g. $a: b$
State one correct ratio

Obtain a ratio of three unknowns, e.g. $a: b: c=6: 1:-8$, or equivalent
Either use coordinates of a relevant point and found ratio to find fourth unknown, d, or find the ratio of all four unknowns

Obtain answer $6 x+y-8 z=6$, or equivalent
2. (i) State or imply a direction vector of $A B$ is $-\mathbf{i}+2 \mathbf{j}+\mathbf{k}$, or equivalent

State equation of $A B$ is $\mathbf{r}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})$, or equivalent
Substitute in equation of p and solve for λ
Obtain $4 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ as position vector of C
(ii) State or imply a normal vector of p is $\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$, or equivalent

Carry out correct process for evaluating the scalar product of two relevant vectors, e.g. $(-\mathbf{i}+2 \mathbf{j}+\mathbf{k}) .(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})$

Using the correct process for calculating the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine or inverse sine of the result

Obtain answer 24.1°
(iii) EITHER:

Obtain $A C(=\sqrt{24})$ in any correct form $\quad B 1 \sqrt{ }$
Use trig to obtain length of perpendicular from A to $p \quad$ M1
Obtain given answer correctly A1
OR:
State or imply $\overrightarrow{A C}$ is $2 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k}$, or equivalent
Use scalar product of $\overrightarrow{A C}$ and a unit normal of p to calculate the perpendicular

Obtain given answer correctly
OR:
Use plane perpendicular formula to find perpendicular from A to p
Obtain a correct unsimplified numerical expression, e.g.

$$
\frac{|2-2(2)+2(1)-6|}{\sqrt{\left(1^{2}+(-2)^{2}+2^{2}\right)}}
$$

Obtain given answer correctly
A1 3
3. (i) State $\mathbf{r}=\left(\begin{array}{r}-1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{r}3 \\ -1 \\ -4\end{array}\right)$, or equivalent

B1 1
(ii) Express $\overrightarrow{B N}$ in terms of λ, e.g. $\left(\begin{array}{c}-1+3 \lambda \\ 3-\lambda \\ 5-4 \lambda\end{array}\right)-\left(\begin{array}{c}3 \\ -1 \\ -4\end{array}\right)$, or equivalent Equate its scalar product with $\left(\begin{array}{c}3 \\ -1 \\ -4\end{array}\right)$ to zero and solve for λ

Obtain $\lambda=2$
Obtain $\overrightarrow{O N}=\left(\begin{array}{r}5 \\ 1 \\ -3\end{array}\right)$, or equivalent

Carry out method for calculating $B N$, i.e. $|2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}|$
Obtain the given answer $B N=3$ correctly

(iii) EITHER:

Use scalar product to obtain a relevant equation in a, b and c, e.g. $3 a-b-4 c=0$ or $2 a+2 b+\mathrm{c}=0$

Sate two correct equations in a, b, c
Solve simultaneous equations to obtain one ratio, e.g. $a: b$
Obtain $a: b: c=7:-11: 8$, or equivalent
Obtain equation $7 x-11 y+8 z=0$, or equivalent
OR:
Substitute for A, B and N in equation of plane and state 3 equations in a, b, c, d

Eliminate one unknown, e.g. d, entirely and obtain 2 equation
in 3 unknowns
Solve to obtain one ratio e.g. $a: b \quad$ M1
Obtain $a: b: c=7:-11: 8$, or equivalent A1
Obtain equation $7 x-11 y+8 z=0$, or equivalent A1
OR:
Calculate vector product of two vector parallel to the plane, e.g. $(3 \mathbf{i}-\mathbf{j}-4 \mathbf{k}) \times(2 \mathbf{i}+2 \mathbf{j}+\mathbf{k})$

Obtain 2 correct components of the product
Obtain correct product e.g. $7 \mathbf{i}-11 \mathbf{j}+8 \mathbf{k}$, or equivalent A1
Substitute in $7 x-11 y+8 z=d$ and find d, or equivalent M1
Obtain equivalent $7 x-11 y+8 z=0$, or equivalent A1
OR:
Form correctly a 2-parameter equation for the plane M1
Obtain equation in any correct form e.g. $\mathbf{r}=-\mathbf{i}+3 \mathbf{j}+5 \mathbf{k}+$ $\lambda(3 \mathbf{i}-\mathbf{j}-4 \mathbf{k})+\mu(2 \mathbf{i}+2 \mathbf{j}+\mathbf{k})$
State 3 equation in x, y, z, λ, and $\mu \quad$ A1
Eliminate λ and $\mu \quad$ M1
Obtain equation $7 x-11 y+8 z=0$, or equivalent A1
A1 5

4. (i) EITHER

Substitute coordinates of general point of l in equation of plane and equate constant terms, obtaining an equation in b and c

Obtain a correct equation, e.g. $8+2 b-\mathrm{c}=1$
Equate the coefficient of t to zero, obtaining an equation in b and c
Obtain a correct equation, e.g. $4-b-2 c=0$

OR

Substitute $(4,2,-1)$ in the plane equation
Obtain a correct equation in b and c, e.g. $2 b-c=-7$

EITHER

Find a second point on l and obtain an equation in b and $c \quad$ M1*
Obtain a correct equation in b and c, e.g. $b+2 c=4 \quad$ A1
OR
Calculate scalar product of a direction vector for l and a vector normal for the plane and equate to zero

Obtain a correct equation for b and c
A1
Solve for b or for c

(ii) EITHER

Find $\overrightarrow{P Q}$ for a point Q on l with parameter t, e.g. $4 \mathbf{i}-5 \mathbf{k}+t(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$

Calculate scalar product of $\overrightarrow{P Q}$ and a direction vector for l and equate to zero

Solve and obtain $t=-2$
Carry out a complete method for finding the length of $\overrightarrow{P Q}$
Obtain the given answer $\sqrt{5}$ correctly

OR 1

Calling $(4,2,-1) A$, state $\overrightarrow{A P}$ (or $\overrightarrow{P A}$) in component form, e.g. $4 \mathbf{i}-5 \mathbf{k}$

Calculate vector product of $\overrightarrow{A P}$ and a direction vector for l, e.g. $(4 \mathbf{i}-5 \mathbf{k}) \times(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$

Obtain correct answer, e.g. $-5 \mathbf{i}-2 \mathbf{j}-4 \mathbf{k}$

Obtain the given answer correctly

OR 2

State $\overrightarrow{A P}$ (or $\overrightarrow{P A}$) in component form
Use a scalar product to find the projection of $\overrightarrow{A P}$ (or $\overrightarrow{P A}$) on l
Obtain correct answer in any form, e.g. $\frac{18}{\sqrt{9}}$
Use Pythagoras to find the perpendicular
Obtain the given answer correctly A1

OR 3

State $\overrightarrow{A P}($ or $\overrightarrow{P A})$ in component form B1
Use a scalar product to find the cosine of $P A Q \quad$ M1
Obtain correct answer in any form, e.g. $\frac{18}{\sqrt{41 \cdot} \sqrt{9}} \quad$ A1
Use trig to find the perpendicular M1
Obtain the given answer correctly A1

OR 4

State $\overrightarrow{A P}($ or $\overrightarrow{P A})$ in component form B1
Find a second point B on l and use the cosine rule in triangle $A P B$ to find the cosine of A, B or P, or use a vector product to find the area of $A P B$

Obtain correct answer in any form A1
Use trig or area formula to find the perpendicular M1
Obtain the given answer correctly A1

OR 5

Find $\overrightarrow{P Q}$ for a point Q on l with
parameter t, e.g. $4 \mathbf{i}-5 \mathbf{k}+t(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$
Use correct method to express $P Q^{2}($ or $P Q)$ in terms of $t \quad$ M1
Obtain a correct expression in any form,
e.g. $(4+2 t)^{2}+(-t)^{2}+(-5-2 t)^{2}$

Obtain the given answer correctly
5. (i) State or imply a correct normal vector to either plane, e.g.
$2 \mathbf{i}-\mathbf{j}-3 \mathbf{k}$, or $\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$
Carry out correct process for evaluating the scalar product of the two normals

Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result

Obtain answer 57.7° (or 1.01 radians)

(ii) EITHER:

Carry out a complete method for finding a point on the line
Obtain such a point, e.g. $(2,0,-1)$
EITHER:
State two correct equations for a direction vector of the line, e.g.
$2 a-b-3 c=0$ and $a+2 b+2 c=0 \quad$ B1
Solve for one ratio, e.g. $a: b \quad$ M1
Obtain $a: b: c=4:-7: 5$, or equivalent A1
State a correct answer, e.g. $\mathbf{r}=2 \mathbf{i}-\mathbf{k}+\lambda(4 \mathbf{i}-7 \mathbf{j}+5 \mathbf{k}) \quad$ A1 $\sqrt{ }$
OR:
Obtain a second point on the line, e.g. $\left(0, \frac{7}{2},-\frac{7}{2}\right)$
Subtract position vectors to obtain a direction vector
Obtain $4 \mathbf{i}-7 \mathbf{j}+5 \mathbf{k}$, or equivalent
State a correct answer, e.g. $\mathbf{r}=2 \mathbf{i}-\mathbf{k}+\lambda(4 \mathbf{i}-7 \mathbf{j}+5 \mathbf{k})$
OR:
Attempt to calculate the vector product of two normals
Obtain two correct components A1
Obtain $4 \mathbf{i}-7 \mathbf{j}+5 \mathbf{k}$, or equivalent A1
State a correct answer, e.g. $\mathbf{r}=2 \mathbf{i}-\mathbf{k}+\lambda(4 \mathbf{i}-7 \mathbf{j}+5 \mathbf{k}) \quad$ A1 $\sqrt{ }$

OR1

Express one variable in terms of a second
Obtain a correct simplified expression, e.g. $x=\frac{14-4 y}{7}$

Express the first variable in terms of a third
Obtain a correct simplified expression, e.g. $x=\frac{14-4 z}{5}$
Form a vector equation for the line
State a correct answer, e.g. $\mathbf{r}=\frac{7}{2} \mathbf{j}-\frac{7}{2} \mathbf{k}+\lambda\left(\mathbf{i}-\frac{7}{4} \mathbf{j}+\frac{5}{4} \mathbf{k}\right)$, or equivalent

OR2:

Express one variable in terms of a second
Obtain a correct simplified expression, e.g. $y=\frac{14-7 x}{4}$
Express the third variable in terms of the second
Obtain a correct simplified expression, e.g. $z=\frac{5 x-14}{4}$

Form a vector equation for the line
State a correct answer, e.g. $\mathbf{r}=\frac{7}{2} \mathbf{j}-\frac{7}{2} \mathbf{k}+\lambda\left(\mathbf{i}-\frac{7}{4} \mathbf{j}+\frac{5}{4} \mathbf{k}\right)$, or equivalent
[The f.t. is dependent on all M marks having been obtained.]
6. (i) EITHER:

State or imply general point of l has coordinates
($x, 1-2 x, 1+x$), or equivalent
Substitute in LHS of plane equation M1
Verify that the equation is satisfied
OR:
State or imply the plane has equation $\mathbf{r},(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})=5$, or equivalent
Substitute for \mathbf{r} in LHS and expand the scalar product M1
Verify that the equation is satisfied
OR:
Verify that a point of l lies on the plane B1

Find a second point on l and substitute its coordinates in the equation of p M1

Verify second point, e.g. $(1,-1,2)$ lies on the plane A1
OR:
Verify that a point of l lies on the plane B1
Form scalar product of a direction vector of l with a vector normal to p

Verify scalar product is zero and l is parallel to p
(ii) EITHER:

Use scalar product of relevant vectors to form an equation in a, b, c, e.g. $a-2 b+c=0$ or $a+2 b+3 c=0$
State two correct equations in a, b, c
Solve simultaneous equations and find one ration, e.g., $a: b$

Obtain $a: b: c=4: 1:-2$, or equivalent
Substitute correctly in $4 x+y-2-d$ to find d M1
Obtain equation $4 x+y-2 z-1$, or equivalent
OR:
Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i}-2 \mathbf{j}+\mathbf{k}) \times(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$
Obtain 2 correct components of the product A1
Obtain correct products, e.g. $-8 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k} \quad$ A1
Substitute correctly in $4 x+y-2 z=d$ to find $d \quad$ M1
Obtain equation $4 x+y-2 z=1$, or equivalent A1
[SR: If the outcome of the vector product is the negative of the correct answer allow the final mark to be available, i.e. M2A0A0M1A1 is possible]

OR:
Attempt to form 2-parameter equation for the plane with relevant vectors

State a correct equation, e.g. $\mathbf{r}=2 \mathbf{i}+\mathbf{j}+4 \mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+\mathbf{k})$
$+\mu(\mathbf{I}+2 \mathbf{j}+3 \mathbf{k})$
State 3 equations in x, y, λ, μ
Eliminate λ and μ
Obtain equation $4 x+y-2 z-1$, or equivalent

7. (i) EITHER:

Obtain a vector parallel to the plane, e.g. $\overrightarrow{A B}=-\mathbf{i}+2 \mathbf{j} \quad \mathrm{~B} 1$
Use scalar product of perpendicular vector to obtain an equation in a, b, c, e.g. $-a+2 b=0$ or $-a+b+2 c=0$, or $-b+2 c=0 \quad$ M1
Obtain two correct equations in $a, b, c \quad$ A1
Solve to obtain ratio $a: b: c$, or equivalent M1
Obtain $a: b: c=4: 2: 1$, or equivalent A1
Obtain equivalent $4 x+2 y+z=8$, or equivalent A1
OR1:
Substitute for A and B and obtain $2 a=d$ and $a+2 b=d$
Substitute for C to obtain a third equation and eliminate one
unknown $(a, b$, or d) entirely
Obtain two correct equation in three unknowns e.g. $a, b, c \quad$ A1
Solve to obtain their ratio, e.g. $a: b: c$, or equivalent M1
Obtain $a: b: c=4: 2: 1$, or $a: c: d=4: 1: 8$ or $b: c: d=2: 1: 8$, or equivalent
Obtain equation $4 x+2 y+z=8$, or equivalent A1

OR2:

Substitute for A and B and obtain $2 a-d$ and $a+2 b=d$
Solve to obtain ratio $a: b: d$, or equivalent
Obtain $a: b: d=2: 1: 4$, or equivalent
Substitute for C to find $c \quad$ M1
Obtain equation $4 x+2 y+z=8$, or equivalent

OR3:

Obtain a vector parallel to the plane e.g. $\overrightarrow{B C}=-\mathbf{j}+2 \mathbf{k}$
Obtain a second such vector and calculate their vector product, e.g. $(-\mathbf{i}+2 \mathbf{j}) \times(-\mathbf{j}+2 \mathbf{k})$M1

Obtain two correct components of the product A1
Obtain correct answer, e.g. $4 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$
Substitute in $4 x+2 y+z=d$ to find $d \quad$ M1
Obtain equation $4 x+2 y+z=8$, or equivalent A1

OR4:

Obtain a vector parallel to the plane, e.g. $\overrightarrow{A C}=-\mathbf{i}+\mathbf{j}+2 \mathbf{k}$

Obtain a second such vector and form correctly a 2-parameter		
equation for the plane		
Obtain a correct equation, e.g. $\mathbf{r}=2 \mathbf{i}+\lambda(-\mathbf{i}+2 \mathbf{j})+\mu(-\mathbf{i}+\mathbf{j}+2 \mathbf{k})$	A1	
State three equations in x, y, z, λ, μ	A1	
Eliminate λ and μ	M1	
Obtain equation $4 x+2 y+z=8$, or equivalent	A1	6

(ii) State or imply a normal vector for plane $O A B$ is \mathbf{k}, or equivalent

Carry out correct process for evaluating a scalar product of two relevant vectors, $(4 \mathbf{i}+2 \mathbf{j}+\mathbf{k})$. (\mathbf{k})

Using the correct process for calculating the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result

Obtain answer 77.4° or 1.35 radians A14
8. (i) State a vector equation for the line through A and B, e.g.
$\mathbf{r}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}+s(\mathbf{i}-\mathbf{j})$

Equate at least two pairs of components of general points on $A B$ and l, and solve for s or for t

Obtain correct answer for s or t, e.g. $s=-6,2,-2$ when $t=3,-1,-1$ respectively

Verify that all three component equations are not satisfied
(ii) State or imply a direction vector for $A P$ has components
$(-2 t, 3+t,-1-t)$, or equivalent
State or imply $\cos 60^{\circ}$ equals $\frac{\overrightarrow{A P} \cdot \overrightarrow{A B}}{|\overrightarrow{A P} \cdot| \overrightarrow{A B} \mid}$
M1*

Carry out correct processes for expanding the scalar product and expressing the product of the moduli in terms of t, in order to obtain an equation in t in any form

Obtain the given equation $3 t^{2}+7 t+2=0$ correctly
Solve the quadratic and use a root to find a position vector for P
Obtain position vector $5 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$ from $t=-2$, having rejected the root $t=-\frac{1}{3}$ for a valid reason
9. (i) Substitute for r and expand the given scalar product, or correct equivalent, to obtain an equation in s

Solve a linear equation formed from a scalar product for s
Obtain $s=2$ and position vector $3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ for A
(ii) State or imply a normal vector of p is $2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$, or equivalent

Use the correct process for evaluating a relevant scalar product, e.g. $(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}) .(2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k})$

Using the correct process for calculating the moduli, divide the scalar product by the product of the moduli and evaluate the inverse sine or cosine of the result

Obtain final answer 72.2° or 1.26 radians
(iii) EITHER:

Taking the direction vector of the line to be $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$, state equation $2 a-3 b+6 c=0$
State equation $a-2 b+2 c=0 \quad$ B1
Solve to find one ratio, e.g. $a: b \quad$ M1
Obtain ratio $a: b: c=6: 2:-1$, or equivalent A1
State answer $\mathbf{r}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(6 \mathbf{i}+2 \mathbf{j}-\mathbf{k})$, or equivalent $\quad \mathrm{A} 1 \sqrt{ }$

OR1:

Attempt to calculate the vector product of a direction vector for the line 1 and a normal vector of the plane p, e.g. $(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}) \times(2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k})$

Obtain two correct components of the product
Obtain answer $-6 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$, or equivalent
State answer $\mathbf{r}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(-6 \mathbf{i}-2 \mathbf{j}+\mathbf{k})$, or equivalent
OR2:
Obtain the equation of the plane containing A and perpendicular to the line l
State answer $x-2 y+2 z=1$, or equivalent
Find position vector of a second point B on the line of intersection of this plane with the plane p, e.g. $9 \mathbf{i}+4 \mathbf{j}$
Obtain a direction vector for this line of intersection, e.g. $6 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
State answer $\mathbf{r}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}+\lambda(6 \mathbf{i}+2 \mathbf{j}-\mathbf{k})$, or equivalent
A1 5
[The f.t. is on A.]

