

Byarflim Precfle Tiss

1. The polynomial $x^{3}-x^{2}+a x+b$ is denoted by $\mathrm{p}(x)$. It is given that $(x+1)$ is a factor of $\mathrm{p}(x)$ and that when $\mathrm{p}(x)$ is divided by $(x-2)$ the remainder is 12 .
(i) Find the values of a and b.
(ii) When a and b have these values, factorise $\mathrm{p}(x)$.
2. Solve the equation $12=|3 x-2|$.
3. (i) Solve the equation $2^{x}+1=45$ giving your answer to 3SF.
(ii) Solve the inequality $(0.8)^{X}<0.5$ giving your answer to 3SF
(iii) Find the exact solution to the equation $\log _{6}(x+5)+\log _{6} x=2$
4. (i) Sketch the graphs of $y=|2 x-1|$ and $y=|x|$ on the same set of axes.
(ii) Solve the inequality $|2 x-1|>|x|$.
5. The polynomial $2 x^{3}-3 x^{2}+a x+b$, where a and b are constants, is denoted by $\mathrm{p}(x)$. It is given that $(x-2)$ is a factor of $\mathrm{p}(x)$, and that when $\mathrm{p}(x)$ is divided by $(x+2)$ the remainder is -20 .
(i) Find the values of a and b.
(ii) When a and b have these values, find the remainder when $\mathrm{p}(x)$ is divided by $\left(x^{2}-4\right)$.
6. (i) Express 4^{x} in terms of y, where $y=2^{x}$.
[1]
(ii) Hence find the values of x that satisfy the equation

$$
3\left(4^{x}\right)-10\left(2^{x}\right)+3=0
$$

giving your answers correct to 2 decimal places.

1. The polynomial $x^{3}-x^{2}+a x+b$ is denoted by $p(x)$. It is given that $(x+1)$ is a factor of $p(x)$ and that when $p(x)$ is divided by $(x-2)$ the remainder is 12 .
(i) Find the values of a and b.

$$
\begin{aligned}
& p(-1)=0 \\
&-1-1-a+b=0 \\
& b-a=2 \\
& 3 \\
& 3 a=6 \\
& a=2 \\
& b-2=2 \\
& b=4
\end{aligned}
$$

$$
p(2)=12
$$

$$
8-4+2 a+b=12
$$

$$
\begin{gathered}
+2 a+b=8 \\
2 a+b=8 \\
\hline
\end{gathered}
$$

(ii) When a and b have these values, factorise $p(x)$.
$p(x)=x^{3}-x^{2}+2 x+4$ has fact $(x+1)$ of

2. Solve the equation $12=|3 x-2|$.

$$
\begin{aligned}
& 3 x-2=12 \quad{ }_{-3 x+2=12}^{ \pm} \\
& 3 x=14 \\
& -3 x=10 \\
& x=\frac{14}{3}
\end{aligned}
$$

3. (i) Solve the equation $2^{x}+1=45$ giving your answer to 3 SF.

$$
\begin{gather*}
\log _{2} 2^{x}=44 \\
x=5 \\
x=5.46(35 f)
\end{gather*}
$$

$$
\begin{aligned}
& x>3 \\
& =2
\end{aligned}
$$

(17) Find tog $\left(x_{6}\left(x^{2}+5 x\right)=2\right.$ $36=x^{2}+55$ $0=x^{2}+5 x-36$
$O=(x+9)(x-4)$
© Doublestruck \& CIE - Licensed to Brillantmont Intemational Cheese Factory

4. (i) Sketch the graphs of $y=|2 x-1|$ and $y=|x|$ on the same set of axes.

Critical (ii) Solve the inequality $|2 x-1|>|x|$.
points $(2 x-1)^{2}=x^{2}$ $4 x^{2}-4 x+1=x^{2}$ $3 x^{2}-4 x+1=0$ $(3 x-1)(x-1)=0$ $J=\frac{1}{3}$ or $x=1$
© Doublestruck \& CIE - Licensed to Brillantmont Intemational Cheese Factory

use graph to describe the anions!
5. The polynomial $2 x^{3}-3 x^{2}+a x+b$, where a and b are constants, is denoted by $\mathrm{p}(x)$. It is given that $(x-2)$ is a factor of $\mathrm{p}(x)$, and that when $p(x)$ is divided by $(x+2)$ the remainder is -20 .
(i) Find the values of a and b.

$$
\begin{aligned}
& 2(2)^{3}-3(2)^{2}+2 a+b=0 \\
& 16-12+2 a+b=0 \\
& 2 a+b=-4 \text { (4) }
\end{aligned}
$$

$2(-2)^{3}-3(-2)^{2}-2 a+b=-20$ $-16-12-2 a+y=-20$ $-2 a+b=8$ (B)
(ii) When a and b have these values, find the remainder when $p(x)$ is

$$
\begin{aligned}
& \frac{\begin{array}{l}
x^{2}-4 \\
\frac{2 x^{3}-3 x^{3}-3 x+2}{}-8 x
\end{array}}{\frac{-3 x^{2}+5 x+2}{}} \begin{array}{l}
\frac{-3 x^{2}+12}{5 x-10}
\end{array} \text { Remainder }
\end{aligned}
$$

6. (i) Express 4^{x} in terms of y, where $y=2^{x}$.
(ii) Hence find the values of x that satisfy the equation

$$
3\left(4^{x}\right)-10\left(2^{x}\right)+3=0
$$

giving your answers correct to 2 decimal places.
(ii)

$$
4^{x}=\left(2^{2}\right)^{x}=2^{x}=\left(2^{x}\right)^{2}=y^{2}
$$ Let $y=2^{x}$ $3 y^{2}-10 y+3=0$ $(3 y-1)(y-3)=0$ $y=\frac{1}{3}$ OR

$$
y=3
$$

$$
2^{x}=\frac{1}{3}
$$

$$
\text { OR } \quad 2^{x}=3
$$

$$
\log _{2} \frac{1}{3}=x \quad \text { OR } \log _{2} 3=x
$$

$$
x=-1.58 \text { OR } 1.58 \text { (35F) }
$$

