

1. Gohan throws a fair tetrahedral die with faces numbered $1,2,3,4$. If she throws an even number then her score is the number thrown. If she throws an odd number then she throws again and her score is the sum of both numbers thrown. Let the random variable X denote Gohan's score.
(i) Show that $\mathrm{P}(X=2)=\frac{5}{16}$.
(ii) The table below shows the probability distribution of X.

x	2	3	4	5	6	7
$\mathrm{P}(X=x)$	$\frac{5}{16}$	$\frac{1}{16}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$

Calculate $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
2. 32 teams enter for a knockout competition, in which each match results in one team winning and the other team losing. After each match the winning team goes on to the next round, and the losing team takes no further part in the competition. Thus 16 teams play in the second round, 8 teams play in the third round, and so on, until 2 teams play in the final round.
(i) How many teams play in only 1 match?
(ii) How many teams play in exactly 2 matches?
(iii) Draw up a frequency table for the numbers of matches which the teams play.
(iv) Calculate the mean and variance of the numbers of matches which the teams play.
3. The discrete random variable X has the following probability distribution.

x	0	1	2	3	4
$P(X=x)$	0.26	q	$3 q$	0.05	0.09

(i) Find the value of q.
(ii) Find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
4. In a competition, people pay $\$ 1$ to throw a ball at a target. If they hit the target on the first throw they receive $\$ 5$. If they hit it on the second or third throw they receive $\$ 3$, and if they hit it on the fourth or fifth throw they receive $\$ 1$. People stop throwing after the first hit, or after 5 throws if no hit is made. Mario has a constant probability of $\frac{1}{5}$ of hitting the target on any throw, independently of the results of other throws.
(i) Mario misses with his first and second throws and hits the target with his third throw. State how much profit he has made.
(ii) Show that the probability that Mario's profit is $\$ 0$ is 0.184 , correct to 3 significant figures.
(iii) Draw up a probability distribution table for Mario's profit.
(iv) Calculate his expected profit.
5. The random variable X takes the values $-2,0$ and 4 only. It is given that $\mathrm{P}(X=-2)=2 p$, $\mathrm{P}(X=0)=p$ and $\mathrm{P}(X=4)=3 p$.
(i) Find p.
(ii) Find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
6. It is known that, on average, 2 people in 5 in a certain country are overweight. A random sample of 400 people is chosen. Using a suitable approximation, find the probability that fewer than 165 people in the sample are overweight.
7. (i) The daily minimum temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ in January in Ottawa is a random variable with distribution $\mathrm{N}(-15.1,62.0)$. Find the probability that a randomly chosen day in January in Ottawa has a minimum temperature above $0^{\circ} \mathrm{C}$.
(ii) In another city the daily minimum temperature in ${ }^{\circ} \mathrm{C}$ in January is a random variable with distribution $\mathrm{N}(\mu, 40.0)$. In this city the probability that a randomly chosen day in January has a minimum temperature above $0^{\circ} \mathrm{C}$ is 0.8888 . Find the value of μ.
8. (a) The random variable X is normally distributed. The mean is twice the standard deviation. It is given that $\mathrm{P}(X>5.2)=0.9$. Find the standard deviation.
(b) A normal distribution has mean μ and standard deviation σ. If 800 observations are taken from this distribution, how many would you expect to be between $\mu-\sigma$ and $\mu+\sigma$?
9.

The random variable X has a normal distribution with mean 4.5. It is given that $\mathrm{P}(X>5.5)=0.0465$ (see diagram).
(i) Find the standard deviation of X.
(ii) Find the probability that a random observation of X lies between 3.8 and 4.8 .
10. (i) Give an example of a variable in real life which could be modelled by a normal distribution.
(ii) The random variable X is normally distributed with mean μ and variance 21.0. Given that $\mathrm{P}(X>10.0)=0.7389$, find the value of μ.
(iii) If 300 observations are taken at random from the distribution in part (ii), estimate how many of these would be greater than 22.0.
11. In a certain country the time taken for a common infection to clear up is normally distributed with mean μ days and standard deviation 2.6 days. 25% of these infections clear up in less than 7 days.
(i) Find the value of μ.

In another country the standard deviation of the time taken for the infection to clear up is the same as in part (i), but the mean is 6.5 days. The time taken is normally distributed.
(ii) Find the probability that, in a randomly chosen case from this country, the infection takes longer than 6.2 days to clear up.
12. The lengths of fish of a certain type have a normal distribution with mean 38 cm . It is found that 5% of the fish are longer than 50 cm .
(i) Find the standard deviation.
(ii) When fish are chosen for sale, those shorter than 30 cm are rejected. Find the proportion of fish rejected.
(iii) 9 fish are chosen at random. Find the probability that at least one of them is longer than 50 cm .
13. The volume of milk in millilitres in cartons is normally distributed with mean μ and standard deviation 8 . Measurements were taken of the volume in 900 of these cartons and it was found that 225 of them contained more than 1002 millilitres.
(i) Calculate the value of μ.
(ii) Three of these 900 cartons are chosen at random. Calculate the probability that exactly 2 of them contain more than 1002 millilitres.
14. A survey of adults in a certain large town found that 76% of people wore a watch on their left wrist, 15% wore a watch on their right wrist and 9% did not wear a watch.
(i) A random sample of 14 adults was taken. Find the probability that more than 2 adults did not wear a watch.
(ii) A random sample of 200 adults was taken. Using a suitable approximation, find the probability that more than 155 wore a watch on their left wrist.
15. On a certain road 20% of the vehicles are trucks, 16% are buses and the remainder are cars.
(i) A random sample of 11 vehicles is taken. Find the probability that fewer than 3 are buses.
(ii) A random sample of 125 vehicles is now taken. Using a suitable approximation, find the probability that more than 73 are cars.
16. In tests on a new type of light bulb it was found that the time they lasted followed a normal distribution with standard deviation 40.6 hours. 10% lasted longer than 5130 hours.
(i) Find the mean lifetime, giving your answer to the nearest hour.
(ii) Find the probability that a light bulb fails to last for 5000 hours.
(iii) A hospital buys 600 of these light bulbs. Using a suitable approximation, find the probability that fewer than 65 light bulbs will last longer than 5130 hours.
17. On any occasion when a particular gymnast performs a certain routine, the probability that she will perform it correctly is 0.65 , independently of all other occasions.
(i) Find the probability that she will perform the routine correctly on exactly 5 occasions out of 7 .
(ii) On one day she performs the routine 50 times. Use a suitable approximation to estimate the probability that she will perform the routine correctly on fewer than 29 occasions.
(iii) On another day she performs the routine n times. Find the smallest value of n for which the expected number of correct performances is at least 8 .
18. A manufacturer makes two sizes of elastic bands: large and small. 40% of the bands produced are large bands and 60% are small bands. Assuming that each pack of these elastic bands contains a random selection, calculate the probability that, in a pack containing 20 bands, there are
(i) equal numbers of large and small bands,
(ii) more than 17 small bands.

An office pack contains 150 elastic bands.
(iii) Using a suitable approximation, calculate the probability that the number of small bands in the office pack is between 88 and 97 inclusive.
19. On a production line making toys, the probability of any toy being faulty is 0.08 . A random sample of 200 toys is checked. Use a suitable approximation to find the probability that there are at least 15 faulty toys.

SOLUTIONS

1. (i) $\mathrm{P}(X=2)=1 / 4 \times 1 / 4+1 / 4=5 / 16 \mathrm{AG}$

Considering cases $(1,1)$ and (2)

		1	2	3	4
OR can use a table	1	2	2	4	4
	2	3	2	5	4
	3	4	2	6	4
	4	5	2	7	4

Correct given answer legitimately obtained
$(1 / 16+4 / 16$ needs some justification but $1 / 16+1 / 4$ is acceptable)
(ii) $\mathrm{E}(X)=\Sigma x p$

Using correct formula for $\mathrm{E}(X)$, no extra division
= 15/4 (3.75)
Correct answer
$\operatorname{Var}(X)=2^{2} \times 5 / 16+3^{2} \times 1 / 16+$
$4^{2} \times 3 / 8+\ldots-(15 / 4)^{2}$
Using a variance formula correctly with mean ${ }^{2}$ subtracted numerically, no extra division
$=260 / 16-225 / 16=35 / 16$ (2.19)
Correct final answer
2. (i) 16
(ii) 8
(iii) Matches 1,2,3,4,5

Matches	1	2	3	4	5
freq	16	8	4	3	2

3 correct frequencies

All correct
(iv) mean $=62 / 32$

Using their $\Sigma f x / \Sigma f$

$$
=1.9375(=1.94)
$$

Correct answer
$\operatorname{var}=166 / 32-(62 / 32)^{2}$
Subst in $\Sigma f x^{2}-(\Sigma f x / n)^{2}$ formula

$$
=1.43
$$

Correct answer, or B2 if used calculator
3. (i) $q+3 q+0.26+0.05+0.09=1$

Equation with q in summing probs to 1 must be probs
$q=0.15$
Correct answer
(ii) $\mathrm{E}(X)=1.56$

Correct final answer, ft on wrong q
$\operatorname{Var}(X)=0.15+1.8+0.45+1.44-$ mean 2
Subst in $\Sigma p x^{2}-$ mean 2 formula

$$
=1.41
$$

Correct final answer
4. (i) $\$ 2$

For correct answer
(ii) $\quad \mathrm{P}(\mathrm{MMMH})+\mathrm{P}(\mathrm{MMMMH})$

For attempting to sum $\mathrm{P}(\mathrm{MMMH})$ and $\mathrm{P}(\mathrm{MMMMH})$
$=0.8^{3} \times 0.2+0.8^{4} \times 0.2=0.184 \mathbf{A G}$
For correct answer
(iii)

x	4	2	0	-1
$\mathrm{P}(X=x)$	0.2	0.288	0.184	0.328

For one correct prob other than 0.184

For another correct prob other than 0.184 , ft only if the -1 ignored and their $3^{\text {rd }}$ prob is $1-\Sigma$ the other 2
$\begin{array}{ll}\text { For correct table, can have separate } 2 \mathrm{~s} & \text { B13 }\end{array}$
(iv) $\mathrm{E}(X)=0.8+0.576-0.328$

For attempt at $\Sigma x p$ from their table, at least 2 non-zero terms

$$
=\$ 1.05
$$

For correct answer
5. (i) $2 p+p+3 p=1$

Equation involving ps and summing to 1
$p=1 / 6(=0.167)$
Correct answer
(ii) $\mathrm{E}(X)=-2 \times 2 / 6+0+4 \times 3 / 6$

Using correct formula for $\mathrm{E}(X)$, in terms of p or their $p<1$

$$
=4 / 3(=1.33)
$$

Correct expectation ft on their p if $\mathrm{p} \leq 1 / 3$
$\operatorname{Var}(X)=4 \times 2 / 6+0+16 \times 3 / 6-(4 / 3)^{2}$
Substitution in their $\Sigma p x^{2}-$ their $\mathrm{E}^{2}(X)$ need 2 terms

$$
=7.56(68 / 9)
$$

Correct answer
6. $\mu=160, \sigma^{2}=96$

For 160 and 96 seen or implied by 9.798
$\mathrm{P}(\leq 165)=\Phi\left(\frac{164.5-160}{\sqrt{96}}\right)=\Phi(0.4593)$
For standardising, must have square root

For continuity correction, either 165.5 or 164.5

For using tables and finding correct area (i.e.> 0.5)

$$
=0.677
$$

A1
For correct answer
7. (i) $\mathrm{P}(X>0)=1-\Phi \frac{0-15.1}{\sqrt{62}}$

Standardising, sq rt, no cc
$=1-\Phi(1.918)$
$=1-0.9724$
Prob < 0.5 after use of normal tables
$=0.0276$ or answer rounding to
Correct answer
(ii) $z=-1.22$
$z= \pm 1.22$
$-1.22=\frac{0-\mu}{\sqrt{40}}$
an equation in μ, recognisable $z, \sqrt{40}$, no cc
$\mu=7.72$ c.a.o
correct answer c.w.o from same sign on both sides
8. (a) $5.2-2 s=-1.282$

Equation with \pm correct LHS
seen here or later, can be μ or s, no cc
± 1.282 seen accept ± 1.28 or anything in between
solving their equation with recognisable z-value and only 1 unknown occurring twice
$s=7.24$ or 7.23
correct final answer
(b) $\Phi\left(\frac{\mu+\sigma-\mu}{\sigma}\right)=0.8413$
0.8413 (p) seen or implied (can use their own numbers)
$\mathrm{P}(|z|<1)=0.3413 \times 2=0.6826$
finding the correct area i.e. $2 p-1$
$0.6826 \times 800=546$ (accept 547)
correct answer, must be a positive integer

OR

$S R 800 \times 2 / 3=533$ or 534
SR B1
for $2 / 3$
for 533 or 534 or B2 if 533 or
534 and no working
9. (i) $z= \pm 1.68$

B1
Number rounding to 1.68 seen
$z=\frac{5.5-4.5}{\sigma}$
Standardising and attempting to solve with their
z, ; must be z value, no cc, no σ^{2}, no $\sqrt{\sigma}$
$\sigma=0.595$ accept 25/42
Correct answer
(ii) $\quad z_{1}=\frac{3.8-4.5}{0.5952}=-1.176$

For standardising 3.8 or 4.8 , mean 4.5 not 5.5 , their σ or $\sqrt{\sigma}$ or σ^{2} in denom
$z_{2}=\underline{4.8-4.5}-0.504$
One cotse85 2 -value, ft on their σ
prob $=\Phi(0.504)-(1-\Phi(1.176))$

$$
0.6929-(1-0.8802)
$$

Correct area ie $\Phi_{1}+\Phi_{2}-1$ or $\Phi_{1}-\Phi_{2}$ if μ
taken to be 5.5
$=0.573$
Correct answer only
10. (i) heights, weights, times etc of something

Any sensible set of data, must be qualified
(ii) $z=0.64=\frac{\mu-10}{\sqrt{21}}$
$z= \pm 0.64$ seen
equation relating $10, \sqrt{21}, 21, \mu$ and their z or $1-$ their z , (must be a recognisable z value ie not 0.77)
$\mu=12.9$
correct answer
(iii) $z=\frac{22-12.9}{\sqrt{21}}$
$=1.986$
standardising, with or without sq rt , no cc , must be their mean
$\mathrm{P}(X>22)=1-\Phi(1.986)$

$$
\begin{aligned}
& =1-0.9765 \\
& =0.0235
\end{aligned}
$$

correct area ie <0.5, ft on their mean >22
$300 \times 0.0235=7.05$
mult by 300
answer $=7$
correct answer, accept 7 or 8 must be integer
11. (i) $-0.674=\frac{7-\mu}{2.6}$
± 0.674 seen only

Standardising must have a recognisable z-value,
no cc and 2.6

For solving their equation with recognisable z-value, μ and 2.6 not
$1-0.674$ or 0.326 , allow cc
$\mu=8.75$
Correct answer
(ii) $\mathrm{P}(X>6.2)=\mathrm{P}\left(z>\frac{6.2-6.5}{2.6}\right)$

Standardising, no cc on the 6.2
prob >0.5
$=P(z>-0.1154)$
$=0.546$
Correct answer
12. (i) $1.645=\frac{50-38}{\sigma}$

Using $z=+/-1.645$ or 1.65

Equation with 38, 5, σ and a recognizable z-value
$\sigma=7.29$
A13
Correct answer
(ii) $z=\frac{30-38}{\text { their } \sigma}(=-1.097)$

Standardising, no cc
$\mathrm{P}(z<30)=1-\Phi(1.097)$
Finding correct area ie <0.5

$$
\begin{aligned}
& =1-0.8637 \\
& =0.136
\end{aligned}
$$

Correct answer
$\begin{array}{lr}\text { (iii) } & 1-(0.95)^{9} \\ & (0.95)^{9} \text { seen } \\ & -0.370 \\ & \text { correct answer }\end{array} \quad$ B12
13. (i) $z=0.674$

B1
± 0.674 or rounding to, seen, e.g. 0.6743
$\frac{1002-\mu}{8}=0.674$
Standardising and attempting to solve for μ, must use recognisable z-value, no cc, no sq rt, no sq
$\mu=997$
Correct answer rounding to 997
(ii) $\mathrm{P}(2)=3 \times \frac{225}{20} \times \frac{224}{2090} \times \frac{675}{890}$
$900 \times 899 \times 89889900898$ Seen in denom
$=0.140$
or $\frac{{ }^{225} C_{2} \times{ }^{675} C_{1}}{{ }^{900} C_{3}}$
A12
Correct answer not 0.141 or 0.14
14. (i) $1-\mathrm{P}(0,1,2)$
for $1-\mathrm{P}(0,1,2)$
$=1-\left((0.91)^{14}+(0.09)(0.91)^{13} \times{ }_{14} \mathrm{C}_{1}\right.$
$\left.+(0.09)^{2}(0.91)^{12} \times{ }_{14} \mathrm{C}_{2}\right)$
B1
Correct numerical expression for $\mathrm{P}(0)$ or $\mathrm{P}(1)$
B1
Correct numerical expression for $\mathrm{P}(2)$
$=1-(0.2670+0.3698+0.2377)$
$=0.126$
Correct answer
(ii) $\mu=200 \times 0.76=152$,

B1
For both mean and variance correct
$\sigma^{2}=200 \times 0.76 \times 0.24=36.48$
$\mathrm{P}(X>155)$
For standardizing, with or without cc, must
have $\sqrt{ }$ on denom
$=1-\Phi\left(\frac{155.5-152}{\sqrt{36.48}}\right)=1-\Phi(1.5795)$
For use of continuity correction 154.5 or 155.5

For finding an area <0.5 for their z
$=1-0.7188=0.281$
A15
For answer rounding to 0.281
15. (i) $\mathrm{P}(X<3)=\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2)$

Binomial term with ${ }^{11} C_{r} p^{r}(1-p)^{11-r}$ seen
$=(0.84)^{11}+(0.16)(0.84)^{10} \times{ }^{11} \mathrm{C}_{1}+$
$(0.16)^{2}(0.84)^{9} \times{ }^{11} \mathrm{C}_{2}$
Correct expression for $\mathrm{P}(0,1,2)$ or $\mathrm{P}(0,1,2,3)$
Can have wrong p
$=0.1469+0.30782+0.2931$
$=0.748$
Correct final answer. Normal approx M0 M0 A0
(ii) $\mu=125 \times 0.64=80$
$\sigma^{2}=125 \times 0.64 \times 0.36=28.8$
80 and 28.8 or 5.37 seen
$P(X>73)=1-\Phi\left(\frac{73.5-80}{\sqrt{28.8}}\right)$
standardising, with or without cc , must have sq rt in denom
continuity correction 73.5 or 72.5 only
$=\Phi(1.211)$
correct region (>0.5 if mean >73.5, vv if mean
<73.5)
$=0.887$
A15
correct answer
16. (i) $1.282=(5130-\mu) / 40.6$

B1
For ± 1.282 seen, or $1.28,1.281$, not 1.29 or 1.30

For standardising, with or without sq rt, squared,
no cc

$$
\mu=5080 \text { (5078) rounding to } 5080
$$

For correct answer
(ii) $\mathrm{P}(<5000)=\Phi[(5000-5078) / 40.6]$

For standardising, criteria as above, can include cc

$$
=\Phi(-1.921)
$$

For correct area found using tables ie $<0.5 \mathrm{ft}$ on wrong (i)

$$
\begin{aligned}
& =1-0.9727 \\
& =0.0273 \text { or } 2.73 \%
\end{aligned}
$$

For correct answer, accept 0.0274
(iii) $\mu=60$, var $=54$

B1
For 60 and 54 seen (could be sd or variance)
$\mathrm{P}($ fewer than 65$)=\Phi(64.5-60) / \sqrt{ } 54$
For using 64.5 or 65.5 in a standardising process

$$
=\Phi(0.6123)
$$

For standardising, must have $\sqrt{ }$ (their 54) in denom

$$
=0.730 \text { accept } 0.73
$$

For correct answer
17. (i) $\mathrm{P}(X=5)=(0.65)^{5} \times(0.35)^{2} \times{ }_{7} \mathrm{C}_{5}$

Expression with 3 terms, powers summing to 7 and $a_{7} \mathrm{C}$ term
$=0.298$ allow 0.2985
Correct answer
(ii) $\quad \mu=50 \times 0.65(=32.5)$,
$\sigma^{2}=50 \times 0.65 \times 0.35(=11.375)$
32.5 and 11.375 seen or implied
$\mathrm{P}($ fewer than 29$)=\Phi\left(\frac{28.5-32.5}{\sqrt{11.375}}\right)$
standardising, with or without cc , must have sq rt
$=1-\Phi(1.186)$
for continuity correction 28.5 or 29.5

$$
=1-0.8822
$$

correct area ie <0.5 must be from a normal approx

$$
=0.118
$$

correct answer
(iii) $0.65 n \geq 8$
equality or inequality with $n p$ and 8
smallest $n=13$
correct answer
18. (i) $(0.6)^{10} \times(0.4)^{10} \times{ }_{20} \mathrm{C}_{10}$

3 term binomial expression involving ${ }_{20} \mathrm{C}_{\text {something }}$ and powers summing to 20

Correct final answer
(ii) $\mathrm{P}(18,19,20)$

Summing three or 4 binomial expressions
$=(0.6)^{18}(0.4)^{2}{ }_{20} \mathrm{C}_{2}+(0.6)^{19}(0.4)^{1}{ }_{21} \mathrm{C}_{1}$
$+(0.6)^{20}$
$=0.003087+0.000487+0.00003635$
One correct unsimplified expression allow 0.4
0.6 muddle
$=0.00361$
Correct answer

OR:

using normal approx $\mathrm{N}(12,4.8)$
Standardising, cc 16.5 or 17.5 , their mean,
$\sqrt{ }$ (their var)
$z=\frac{17.5-12}{\sqrt{4.8}}$
$=2.52$
2.51 seen

Prob $=1-0.9940=0.0060$
0.0060 seen must be 0.0060
(iii) $\mu=150 \times 0.60=90$
$\sigma^{2}=150 \times 0.60 \times 0.40=36$
For seeing 90 and 36
$\mathrm{P}(88<X<97)$
$=\Phi\left(\frac{97.5-90}{6}\right)-\Phi\left(\frac{87.5-90}{6}\right)$
For standardising, with or without cc, must
have sq rt on denom
$=\Phi(1.25)-\Phi(-0.4166)$
one continuity correction 97.5 or 96.5 or 87.5 or 88.5
$=0.8944-(1-0.6616)$
0.8944 or 0.6616 or 0.3384 or 0.3944 or 0.1616 seen
$=0.556$
subtracting a probability from their standardised 97 prob
correct answer
19. mean $=200 \times 0.08=16$
$\operatorname{var}=14.72$
B1
For both 16 and 14.7 seen
$\mathrm{P}(X \geq 15)=1-\Phi\left(\frac{14.5-16}{\sqrt{14.72}}\right)$
For standardising, with or without cc , must have
$\sqrt{ }$ in denom
$=\Phi(0.391)$
For use of continuity correction 14.5 or 15.5
$=0.652$
M1
For finding a prob >0.5 from their z, legit

For answer rounding to 0.652 c.w.o

