Power $=\frac{F S}{t}=F V \quad$ Measured in $E \times G^{\prime} Q_{1 \text { to } 8 \text { and } 12 \text { to } 16}$ wat's
(1) (i)

$$
\begin{aligned}
P E & =m g h \\
& =3.5 \times 10 \times 9 \\
& =315 \mathrm{~J}
\end{aligned}
$$

number
of seconds
(ii) $315 \times 120=37800 \mathrm{~J}$
(iii)

$$
\begin{aligned}
\text { Power } & =37800 \div 3600 \\
& =10.5 \mathrm{watts}
\end{aligned}
$$

(2) (Work dore $\begin{aligned} & =120(10)(2) \\ & =2400 \mathrm{~J}\end{aligned}$

$$
=2400 \mathrm{~F}
$$

(ii)

$$
\begin{aligned}
& \text { Power }=2400 / 2 \\
& =1200 \mathrm{\omega} \\
& \text { (iii) First bit: }(120 \times 10 \times 0.8) / 0.5 \\
& =1920 \mathrm{\omega} \\
& \text { end bit: OW } \\
& \text { ard hit: }(120 \times 10 \times 1.2) 10.5 \\
& =2880 \mathrm{~W}
\end{aligned}
$$

(3) 0

$$
\begin{aligned}
& \begin{array}{ll}
s=? \\
u & =1.2 \\
n=1.2 & s=u t+\frac{1}{2} a t^{2}
\end{array} \\
& \begin{array}{l}
y=1.2 \\
a=0
\end{array} \quad 36 \mathrm{~m} \\
& \begin{array}{l}
a=0 \\
t=30
\end{array} \text { so } h=36 \sin 30 \\
& =18 \mathrm{~m} \\
& P E=180(10) 18 \\
& =32400 \mathrm{~J}
\end{aligned}
$$

(3)(ii)

$$
\begin{aligned}
w_{d_{F}} & =450 \times 36 \\
& =16200 \mathrm{~J}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
T & =450+1800 \sin 30 \\
& =1350 \\
\omega D_{T} & =1350 \times 36 \\
& =48600 \\
\text { Pow r } & =48600 / 30 \\
& =1620 \mathrm{~W}
\end{aligned}
$$

(iv) 1350 N
(v) The power of the winch.
(4)

Power $=D V$

$$
\begin{aligned}
& \text { Jer }=\text { UV } \\
& D=703 \mathrm{~N} \text { (35F) }
\end{aligned}
$$

$$
\text { so } \mathrm{Fr}=703 \mathrm{~N}(35 f) \text { m Lei }
$$

(5) $\square \rightarrow F$

$$
\begin{aligned}
P & =F V \\
26500 & =F(46) \\
F & =576 \mathrm{~N}(35 F)
\end{aligned}
$$

(6) $5 \mathrm{cms}^{-1}=0.05 \mathrm{~ms}^{-1}$

$$
\begin{array}{rl}
T \\
+1 \\
+1 & a=0 \text { soT }
\end{array}=500000 \mathrm{~N}
$$

(:) Take That!

$$
=\text { Aves }_{\text {ute }} \longrightarrow \text { Force }
$$

(8) 1

$$
\begin{array}{cc}
s=2 & \text { using } \begin{array}{c}
v=u+a t \\
a=2 \\
u=0 \\
==3 \\
a=? \\
t=1.5
\end{array} \quad \text { using } s=u t+\frac{1}{2} a t^{2} \\
a=1.78
\end{array}
$$

so a cant be coaston.
(ii) At star: $K E=0 \quad P E=0$
$\begin{aligned} & +W D \\ A+E n d & : K E=\frac{1}{2}(0.015){ }^{2}+0.0 .15(0)^{2}\end{aligned}$

$$
\begin{aligned}
\omega D & =0.3675 \\
\text { Power } & =0.3675 / 1.5 \\
n & =0.245 \omega
\end{aligned}
$$

(12)

$$
\begin{aligned}
& \text { Pover }=15000 \mathrm{~W} \\
& \text { At A } 15000=750 \mathrm{~V} \\
& \mathrm{~V}=20 \mathrm{~ms}^{-1} \\
& \text { At B } 15000=500 \mathrm{~V} \\
& \mathrm{~V}=30 \\
& \text { Change in } K E=\frac{1}{2}(1000) 30^{2}-\frac{1}{2}(1000) 20^{2} \\
& \\
& =250000 \mathrm{~J}
\end{aligned}
$$

(13)

$F=m a$

$$
\begin{aligned}
& 2187.5-975-11500 \sin 1.2=1150 a \\
& a=0.845 \\
& \frac{\mu^{5}}{(35 F)}
\end{aligned}
$$

(14)
(i)

$$
\begin{gathered}
D-3200-240000 \sin 3=24000(0.2) \\
D=20560.6295 \\
P=20560.6295(25) \\
=514000 \mathrm{~W}(35 \mathrm{~F})
\end{gathered}
$$

(ii) $\rho=D$
$50000=D V$

$$
\begin{aligned}
v & =\frac{50000}{D} \\
& =31.7 \mathrm{~ms}^{-1}
\end{aligned}
$$

means $a=0$
and $D=240000 \sin 3+320$
(15) (i) $P E=160(10) 20$

$$
=32000^{\prime} \mathrm{J}
$$

(ii) $K E=\frac{1}{2}(160)(1.25)^{2}$

$$
=125 \mathrm{~J}
$$

(iii) At start $K E=0 \quad P E=0$

+ Wd by winding drum
- wd by resistance

At end $32000+125$
so

$$
\begin{aligned}
\omega d-20000 & =32125 \\
\omega d & =52125 \\
\text { Power } & =\omega d / \text { fine } \\
& =52125 / 41.7 \\
& =1250 \omega
\end{aligned}
$$

